A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines

Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeuti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-02, Vol.9 (2), p.e90155
Hauptverfasser: Endo, Fumitaka, Nishizuka, Satoshi S, Kume, Kohei, Ishida, Kazushige, Katagiri, Hirokatsu, Ishida, Kaoru, Sato, Kei, Iwaya, Takeshi, Koeda, Keisuke, Wakabayashi, Go
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e90155
container_title PloS one
container_volume 9
creator Endo, Fumitaka
Nishizuka, Satoshi S
Kume, Kohei
Ishida, Kazushige
Katagiri, Hirokatsu
Ishida, Kaoru
Sato, Kei
Iwaya, Takeshi
Koeda, Keisuke
Wakabayashi, Go
description Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in gastric cancer. To evaluate the biological significance of NF-κB in the context of 5-FU-based chemotherapy, we analyzed the NF-κB-dependent biological response upon 5-FU treatment in gastric cancer cell lines. Seven genes induced by 5-FU treatment in an NF-κB-dependent manner were identified, five of which are known p53 targets. Knockdown of RELA, which encodes the p65 subunit of NF-κB, decreased both p53 and p53 target protein levels. In contrast, NF-κB was not affected by TP53 knockdown. We also demonstrated that cell lines bearing Pro/Pro homozygosity in codon72 of p53 exon4, which is important for NF-κB binding to p53, are more resistant to 5-FU than those with Arg/Arg homozygosity. We conclude that NF-κB plays an important role in the response to 5-FU treatment in gastric cancer cell lines, with a possible compensatory function of p53. These results suggest that NF-κB is a potential 5-FU-chemosensitivity prediction marker that may reflect 5-FU-induced stress-response pathways, including p53.
doi_str_mv 10.1371/journal.pone.0090155
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1503068965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_504e9dc64634497ba31794e88f83d255</doaj_id><sourcerecordid>3232539171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-3a47a23642d14755ee87de68397ba34ad1baa81477a6d086a67290c19d67f2a03</originalsourceid><addsrcrecordid>eNp1Us1uEzEQXiEQLYU3QGCJ8wb_23tBKhWBShVc6Nma2LPJRs56sTdIeTUegmdi02yr9sDJ1sx8P5r5quotowsmDPu4TfvcQ1wMqccFpQ1lSj2rzlkjeK05Fc8f_c-qV6VsKVXCav2yOuNSWcOVOq-6S-LTbsC-wJjygeQUkaSWfF_Wf_98JmMigxKk60nGMikVPJZUvbytV1AwEL_BXRo3mGE4kDZlsoYy5s4TD73HTDzGSGLXY3ldvWghFnwzvxfV7fLLz6tv9c2Pr9dXlze1V1yPtQBpgAsteWDSKIVoTUBtRWNWICQEtgKwU8uADtRq0IY31LMmaNNyoOKien_iHWIqbt5ScUxRQbVttJomrk8TIcHWDbnbQT64BJ27K6S8dpDHzkd0ikpsgtdSCynvHDDTSLS2tSJMC5y4Ps1q-9UOg8d-zBCfkD7t9N3GrdNvJxphJJcTwYeZIKdfeyzjfyzL05TPqZSM7YMCo-4Yh3uUO8bBzXGYYO8eu3sA3d9f_ANxu7KA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503068965</pqid></control><display><type>article</type><title>A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Endo, Fumitaka ; Nishizuka, Satoshi S ; Kume, Kohei ; Ishida, Kazushige ; Katagiri, Hirokatsu ; Ishida, Kaoru ; Sato, Kei ; Iwaya, Takeshi ; Koeda, Keisuke ; Wakabayashi, Go</creator><contributor>Hofmann, Thomas G.</contributor><creatorcontrib>Endo, Fumitaka ; Nishizuka, Satoshi S ; Kume, Kohei ; Ishida, Kazushige ; Katagiri, Hirokatsu ; Ishida, Kaoru ; Sato, Kei ; Iwaya, Takeshi ; Koeda, Keisuke ; Wakabayashi, Go ; Hofmann, Thomas G.</creatorcontrib><description>Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in gastric cancer. To evaluate the biological significance of NF-κB in the context of 5-FU-based chemotherapy, we analyzed the NF-κB-dependent biological response upon 5-FU treatment in gastric cancer cell lines. Seven genes induced by 5-FU treatment in an NF-κB-dependent manner were identified, five of which are known p53 targets. Knockdown of RELA, which encodes the p65 subunit of NF-κB, decreased both p53 and p53 target protein levels. In contrast, NF-κB was not affected by TP53 knockdown. We also demonstrated that cell lines bearing Pro/Pro homozygosity in codon72 of p53 exon4, which is important for NF-κB binding to p53, are more resistant to 5-FU than those with Arg/Arg homozygosity. We conclude that NF-κB plays an important role in the response to 5-FU treatment in gastric cancer cell lines, with a possible compensatory function of p53. These results suggest that NF-κB is a potential 5-FU-chemosensitivity prediction marker that may reflect 5-FU-induced stress-response pathways, including p53.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0090155</identifier><identifier>PMID: 24587255</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antimetabolites, Antineoplastic - pharmacology ; Antimetabolites, Antineoplastic - therapeutic use ; Apoptosis ; Bioindicators ; Biology ; Biomarkers ; Biotechnology ; Breast cancer ; Cancer ; Cancer therapies ; Cell Line, Tumor ; Chemotherapy ; Codon ; Drug Resistance, Neoplasm - genetics ; Fluorouracil - pharmacology ; Fluorouracil - therapeutic use ; Gastric cancer ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Knockdown Techniques ; Health risk assessment ; Homozygosity ; Humans ; Laboratories ; Medical prognosis ; Medicine ; NF-kappa B - metabolism ; NF-κB protein ; p53 Protein ; Patients ; Polymorphism ; Protein Binding ; Protein expression ; Protein Transport ; Proteins ; RelA protein ; Stomach cancer ; Stomach Neoplasms - drug therapy ; Stomach Neoplasms - genetics ; Stomach Neoplasms - metabolism ; Surgery ; Transcription Factor RelA - genetics ; Transcription Factor RelA - metabolism ; Tumor cell lines ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumors</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e90155</ispartof><rights>2014 Endo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Endo et al 2014 Endo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-3a47a23642d14755ee87de68397ba34ad1baa81477a6d086a67290c19d67f2a03</citedby><cites>FETCH-LOGICAL-c526t-3a47a23642d14755ee87de68397ba34ad1baa81477a6d086a67290c19d67f2a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937424/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937424/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79357,79358</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24587255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hofmann, Thomas G.</contributor><creatorcontrib>Endo, Fumitaka</creatorcontrib><creatorcontrib>Nishizuka, Satoshi S</creatorcontrib><creatorcontrib>Kume, Kohei</creatorcontrib><creatorcontrib>Ishida, Kazushige</creatorcontrib><creatorcontrib>Katagiri, Hirokatsu</creatorcontrib><creatorcontrib>Ishida, Kaoru</creatorcontrib><creatorcontrib>Sato, Kei</creatorcontrib><creatorcontrib>Iwaya, Takeshi</creatorcontrib><creatorcontrib>Koeda, Keisuke</creatorcontrib><creatorcontrib>Wakabayashi, Go</creatorcontrib><title>A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in gastric cancer. To evaluate the biological significance of NF-κB in the context of 5-FU-based chemotherapy, we analyzed the NF-κB-dependent biological response upon 5-FU treatment in gastric cancer cell lines. Seven genes induced by 5-FU treatment in an NF-κB-dependent manner were identified, five of which are known p53 targets. Knockdown of RELA, which encodes the p65 subunit of NF-κB, decreased both p53 and p53 target protein levels. In contrast, NF-κB was not affected by TP53 knockdown. We also demonstrated that cell lines bearing Pro/Pro homozygosity in codon72 of p53 exon4, which is important for NF-κB binding to p53, are more resistant to 5-FU than those with Arg/Arg homozygosity. We conclude that NF-κB plays an important role in the response to 5-FU treatment in gastric cancer cell lines, with a possible compensatory function of p53. These results suggest that NF-κB is a potential 5-FU-chemosensitivity prediction marker that may reflect 5-FU-induced stress-response pathways, including p53.</description><subject>Antimetabolites, Antineoplastic - pharmacology</subject><subject>Antimetabolites, Antineoplastic - therapeutic use</subject><subject>Apoptosis</subject><subject>Bioindicators</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Biotechnology</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Codon</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Fluorouracil - pharmacology</subject><subject>Fluorouracil - therapeutic use</subject><subject>Gastric cancer</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Knockdown Techniques</subject><subject>Health risk assessment</subject><subject>Homozygosity</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>p53 Protein</subject><subject>Patients</subject><subject>Polymorphism</subject><subject>Protein Binding</subject><subject>Protein expression</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>RelA protein</subject><subject>Stomach cancer</subject><subject>Stomach Neoplasms - drug therapy</subject><subject>Stomach Neoplasms - genetics</subject><subject>Stomach Neoplasms - metabolism</subject><subject>Surgery</subject><subject>Transcription Factor RelA - genetics</subject><subject>Transcription Factor RelA - metabolism</subject><subject>Tumor cell lines</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Us1uEzEQXiEQLYU3QGCJ8wb_23tBKhWBShVc6Nma2LPJRs56sTdIeTUegmdi02yr9sDJ1sx8P5r5quotowsmDPu4TfvcQ1wMqccFpQ1lSj2rzlkjeK05Fc8f_c-qV6VsKVXCav2yOuNSWcOVOq-6S-LTbsC-wJjygeQUkaSWfF_Wf_98JmMigxKk60nGMikVPJZUvbytV1AwEL_BXRo3mGE4kDZlsoYy5s4TD73HTDzGSGLXY3ldvWghFnwzvxfV7fLLz6tv9c2Pr9dXlze1V1yPtQBpgAsteWDSKIVoTUBtRWNWICQEtgKwU8uADtRq0IY31LMmaNNyoOKien_iHWIqbt5ScUxRQbVttJomrk8TIcHWDbnbQT64BJ27K6S8dpDHzkd0ikpsgtdSCynvHDDTSLS2tSJMC5y4Ps1q-9UOg8d-zBCfkD7t9N3GrdNvJxphJJcTwYeZIKdfeyzjfyzL05TPqZSM7YMCo-4Yh3uUO8bBzXGYYO8eu3sA3d9f_ANxu7KA</recordid><startdate>20140227</startdate><enddate>20140227</enddate><creator>Endo, Fumitaka</creator><creator>Nishizuka, Satoshi S</creator><creator>Kume, Kohei</creator><creator>Ishida, Kazushige</creator><creator>Katagiri, Hirokatsu</creator><creator>Ishida, Kaoru</creator><creator>Sato, Kei</creator><creator>Iwaya, Takeshi</creator><creator>Koeda, Keisuke</creator><creator>Wakabayashi, Go</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140227</creationdate><title>A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines</title><author>Endo, Fumitaka ; Nishizuka, Satoshi S ; Kume, Kohei ; Ishida, Kazushige ; Katagiri, Hirokatsu ; Ishida, Kaoru ; Sato, Kei ; Iwaya, Takeshi ; Koeda, Keisuke ; Wakabayashi, Go</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-3a47a23642d14755ee87de68397ba34ad1baa81477a6d086a67290c19d67f2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antimetabolites, Antineoplastic - pharmacology</topic><topic>Antimetabolites, Antineoplastic - therapeutic use</topic><topic>Apoptosis</topic><topic>Bioindicators</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Biotechnology</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Codon</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Fluorouracil - pharmacology</topic><topic>Fluorouracil - therapeutic use</topic><topic>Gastric cancer</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Knockdown Techniques</topic><topic>Health risk assessment</topic><topic>Homozygosity</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>p53 Protein</topic><topic>Patients</topic><topic>Polymorphism</topic><topic>Protein Binding</topic><topic>Protein expression</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>RelA protein</topic><topic>Stomach cancer</topic><topic>Stomach Neoplasms - drug therapy</topic><topic>Stomach Neoplasms - genetics</topic><topic>Stomach Neoplasms - metabolism</topic><topic>Surgery</topic><topic>Transcription Factor RelA - genetics</topic><topic>Transcription Factor RelA - metabolism</topic><topic>Tumor cell lines</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Endo, Fumitaka</creatorcontrib><creatorcontrib>Nishizuka, Satoshi S</creatorcontrib><creatorcontrib>Kume, Kohei</creatorcontrib><creatorcontrib>Ishida, Kazushige</creatorcontrib><creatorcontrib>Katagiri, Hirokatsu</creatorcontrib><creatorcontrib>Ishida, Kaoru</creatorcontrib><creatorcontrib>Sato, Kei</creatorcontrib><creatorcontrib>Iwaya, Takeshi</creatorcontrib><creatorcontrib>Koeda, Keisuke</creatorcontrib><creatorcontrib>Wakabayashi, Go</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Endo, Fumitaka</au><au>Nishizuka, Satoshi S</au><au>Kume, Kohei</au><au>Ishida, Kazushige</au><au>Katagiri, Hirokatsu</au><au>Ishida, Kaoru</au><au>Sato, Kei</au><au>Iwaya, Takeshi</au><au>Koeda, Keisuke</au><au>Wakabayashi, Go</au><au>Hofmann, Thomas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-27</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e90155</spage><pages>e90155-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in gastric cancer. To evaluate the biological significance of NF-κB in the context of 5-FU-based chemotherapy, we analyzed the NF-κB-dependent biological response upon 5-FU treatment in gastric cancer cell lines. Seven genes induced by 5-FU treatment in an NF-κB-dependent manner were identified, five of which are known p53 targets. Knockdown of RELA, which encodes the p65 subunit of NF-κB, decreased both p53 and p53 target protein levels. In contrast, NF-κB was not affected by TP53 knockdown. We also demonstrated that cell lines bearing Pro/Pro homozygosity in codon72 of p53 exon4, which is important for NF-κB binding to p53, are more resistant to 5-FU than those with Arg/Arg homozygosity. We conclude that NF-κB plays an important role in the response to 5-FU treatment in gastric cancer cell lines, with a possible compensatory function of p53. These results suggest that NF-κB is a potential 5-FU-chemosensitivity prediction marker that may reflect 5-FU-induced stress-response pathways, including p53.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24587255</pmid><doi>10.1371/journal.pone.0090155</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-02, Vol.9 (2), p.e90155
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1503068965
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Antimetabolites, Antineoplastic - pharmacology
Antimetabolites, Antineoplastic - therapeutic use
Apoptosis
Bioindicators
Biology
Biomarkers
Biotechnology
Breast cancer
Cancer
Cancer therapies
Cell Line, Tumor
Chemotherapy
Codon
Drug Resistance, Neoplasm - genetics
Fluorouracil - pharmacology
Fluorouracil - therapeutic use
Gastric cancer
Gene Expression Profiling
Gene Expression Regulation, Neoplastic - drug effects
Gene Knockdown Techniques
Health risk assessment
Homozygosity
Humans
Laboratories
Medical prognosis
Medicine
NF-kappa B - metabolism
NF-κB protein
p53 Protein
Patients
Polymorphism
Protein Binding
Protein expression
Protein Transport
Proteins
RelA protein
Stomach cancer
Stomach Neoplasms - drug therapy
Stomach Neoplasms - genetics
Stomach Neoplasms - metabolism
Surgery
Transcription Factor RelA - genetics
Transcription Factor RelA - metabolism
Tumor cell lines
Tumor Suppressor Protein p53 - genetics
Tumor Suppressor Protein p53 - metabolism
Tumors
title A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20compensatory%20role%20of%20NF-%CE%BAB%20to%20p53%20in%20response%20to%205-FU-based%20chemotherapy%20for%20gastric%20cancer%20cell%20lines&rft.jtitle=PloS%20one&rft.au=Endo,%20Fumitaka&rft.date=2014-02-27&rft.volume=9&rft.issue=2&rft.spage=e90155&rft.pages=e90155-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0090155&rft_dat=%3Cproquest_plos_%3E3232539171%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503068965&rft_id=info:pmid/24587255&rft_doaj_id=oai_doaj_org_article_504e9dc64634497ba31794e88f83d255&rfr_iscdi=true