A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines
Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeuti...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-02, Vol.9 (2), p.e90155 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e90155 |
container_title | PloS one |
container_volume | 9 |
creator | Endo, Fumitaka Nishizuka, Satoshi S Kume, Kohei Ishida, Kazushige Katagiri, Hirokatsu Ishida, Kaoru Sato, Kei Iwaya, Takeshi Koeda, Keisuke Wakabayashi, Go |
description | Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in gastric cancer. To evaluate the biological significance of NF-κB in the context of 5-FU-based chemotherapy, we analyzed the NF-κB-dependent biological response upon 5-FU treatment in gastric cancer cell lines. Seven genes induced by 5-FU treatment in an NF-κB-dependent manner were identified, five of which are known p53 targets. Knockdown of RELA, which encodes the p65 subunit of NF-κB, decreased both p53 and p53 target protein levels. In contrast, NF-κB was not affected by TP53 knockdown. We also demonstrated that cell lines bearing Pro/Pro homozygosity in codon72 of p53 exon4, which is important for NF-κB binding to p53, are more resistant to 5-FU than those with Arg/Arg homozygosity. We conclude that NF-κB plays an important role in the response to 5-FU treatment in gastric cancer cell lines, with a possible compensatory function of p53. These results suggest that NF-κB is a potential 5-FU-chemosensitivity prediction marker that may reflect 5-FU-induced stress-response pathways, including p53. |
doi_str_mv | 10.1371/journal.pone.0090155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1503068965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_504e9dc64634497ba31794e88f83d255</doaj_id><sourcerecordid>3232539171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-3a47a23642d14755ee87de68397ba34ad1baa81477a6d086a67290c19d67f2a03</originalsourceid><addsrcrecordid>eNp1Us1uEzEQXiEQLYU3QGCJ8wb_23tBKhWBShVc6Nma2LPJRs56sTdIeTUegmdi02yr9sDJ1sx8P5r5quotowsmDPu4TfvcQ1wMqccFpQ1lSj2rzlkjeK05Fc8f_c-qV6VsKVXCav2yOuNSWcOVOq-6S-LTbsC-wJjygeQUkaSWfF_Wf_98JmMigxKk60nGMikVPJZUvbytV1AwEL_BXRo3mGE4kDZlsoYy5s4TD73HTDzGSGLXY3ldvWghFnwzvxfV7fLLz6tv9c2Pr9dXlze1V1yPtQBpgAsteWDSKIVoTUBtRWNWICQEtgKwU8uADtRq0IY31LMmaNNyoOKien_iHWIqbt5ScUxRQbVttJomrk8TIcHWDbnbQT64BJ27K6S8dpDHzkd0ikpsgtdSCynvHDDTSLS2tSJMC5y4Ps1q-9UOg8d-zBCfkD7t9N3GrdNvJxphJJcTwYeZIKdfeyzjfyzL05TPqZSM7YMCo-4Yh3uUO8bBzXGYYO8eu3sA3d9f_ANxu7KA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503068965</pqid></control><display><type>article</type><title>A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Endo, Fumitaka ; Nishizuka, Satoshi S ; Kume, Kohei ; Ishida, Kazushige ; Katagiri, Hirokatsu ; Ishida, Kaoru ; Sato, Kei ; Iwaya, Takeshi ; Koeda, Keisuke ; Wakabayashi, Go</creator><contributor>Hofmann, Thomas G.</contributor><creatorcontrib>Endo, Fumitaka ; Nishizuka, Satoshi S ; Kume, Kohei ; Ishida, Kazushige ; Katagiri, Hirokatsu ; Ishida, Kaoru ; Sato, Kei ; Iwaya, Takeshi ; Koeda, Keisuke ; Wakabayashi, Go ; Hofmann, Thomas G.</creatorcontrib><description>Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in gastric cancer. To evaluate the biological significance of NF-κB in the context of 5-FU-based chemotherapy, we analyzed the NF-κB-dependent biological response upon 5-FU treatment in gastric cancer cell lines. Seven genes induced by 5-FU treatment in an NF-κB-dependent manner were identified, five of which are known p53 targets. Knockdown of RELA, which encodes the p65 subunit of NF-κB, decreased both p53 and p53 target protein levels. In contrast, NF-κB was not affected by TP53 knockdown. We also demonstrated that cell lines bearing Pro/Pro homozygosity in codon72 of p53 exon4, which is important for NF-κB binding to p53, are more resistant to 5-FU than those with Arg/Arg homozygosity. We conclude that NF-κB plays an important role in the response to 5-FU treatment in gastric cancer cell lines, with a possible compensatory function of p53. These results suggest that NF-κB is a potential 5-FU-chemosensitivity prediction marker that may reflect 5-FU-induced stress-response pathways, including p53.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0090155</identifier><identifier>PMID: 24587255</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antimetabolites, Antineoplastic - pharmacology ; Antimetabolites, Antineoplastic - therapeutic use ; Apoptosis ; Bioindicators ; Biology ; Biomarkers ; Biotechnology ; Breast cancer ; Cancer ; Cancer therapies ; Cell Line, Tumor ; Chemotherapy ; Codon ; Drug Resistance, Neoplasm - genetics ; Fluorouracil - pharmacology ; Fluorouracil - therapeutic use ; Gastric cancer ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Knockdown Techniques ; Health risk assessment ; Homozygosity ; Humans ; Laboratories ; Medical prognosis ; Medicine ; NF-kappa B - metabolism ; NF-κB protein ; p53 Protein ; Patients ; Polymorphism ; Protein Binding ; Protein expression ; Protein Transport ; Proteins ; RelA protein ; Stomach cancer ; Stomach Neoplasms - drug therapy ; Stomach Neoplasms - genetics ; Stomach Neoplasms - metabolism ; Surgery ; Transcription Factor RelA - genetics ; Transcription Factor RelA - metabolism ; Tumor cell lines ; Tumor Suppressor Protein p53 - genetics ; Tumor Suppressor Protein p53 - metabolism ; Tumors</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e90155</ispartof><rights>2014 Endo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Endo et al 2014 Endo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-3a47a23642d14755ee87de68397ba34ad1baa81477a6d086a67290c19d67f2a03</citedby><cites>FETCH-LOGICAL-c526t-3a47a23642d14755ee87de68397ba34ad1baa81477a6d086a67290c19d67f2a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937424/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3937424/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,862,883,2098,2917,23853,27911,27912,53778,53780,79357,79358</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24587255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hofmann, Thomas G.</contributor><creatorcontrib>Endo, Fumitaka</creatorcontrib><creatorcontrib>Nishizuka, Satoshi S</creatorcontrib><creatorcontrib>Kume, Kohei</creatorcontrib><creatorcontrib>Ishida, Kazushige</creatorcontrib><creatorcontrib>Katagiri, Hirokatsu</creatorcontrib><creatorcontrib>Ishida, Kaoru</creatorcontrib><creatorcontrib>Sato, Kei</creatorcontrib><creatorcontrib>Iwaya, Takeshi</creatorcontrib><creatorcontrib>Koeda, Keisuke</creatorcontrib><creatorcontrib>Wakabayashi, Go</creatorcontrib><title>A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in gastric cancer. To evaluate the biological significance of NF-κB in the context of 5-FU-based chemotherapy, we analyzed the NF-κB-dependent biological response upon 5-FU treatment in gastric cancer cell lines. Seven genes induced by 5-FU treatment in an NF-κB-dependent manner were identified, five of which are known p53 targets. Knockdown of RELA, which encodes the p65 subunit of NF-κB, decreased both p53 and p53 target protein levels. In contrast, NF-κB was not affected by TP53 knockdown. We also demonstrated that cell lines bearing Pro/Pro homozygosity in codon72 of p53 exon4, which is important for NF-κB binding to p53, are more resistant to 5-FU than those with Arg/Arg homozygosity. We conclude that NF-κB plays an important role in the response to 5-FU treatment in gastric cancer cell lines, with a possible compensatory function of p53. These results suggest that NF-κB is a potential 5-FU-chemosensitivity prediction marker that may reflect 5-FU-induced stress-response pathways, including p53.</description><subject>Antimetabolites, Antineoplastic - pharmacology</subject><subject>Antimetabolites, Antineoplastic - therapeutic use</subject><subject>Apoptosis</subject><subject>Bioindicators</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Biotechnology</subject><subject>Breast cancer</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cell Line, Tumor</subject><subject>Chemotherapy</subject><subject>Codon</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Fluorouracil - pharmacology</subject><subject>Fluorouracil - therapeutic use</subject><subject>Gastric cancer</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Knockdown Techniques</subject><subject>Health risk assessment</subject><subject>Homozygosity</subject><subject>Humans</subject><subject>Laboratories</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>NF-kappa B - metabolism</subject><subject>NF-κB protein</subject><subject>p53 Protein</subject><subject>Patients</subject><subject>Polymorphism</subject><subject>Protein Binding</subject><subject>Protein expression</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>RelA protein</subject><subject>Stomach cancer</subject><subject>Stomach Neoplasms - drug therapy</subject><subject>Stomach Neoplasms - genetics</subject><subject>Stomach Neoplasms - metabolism</subject><subject>Surgery</subject><subject>Transcription Factor RelA - genetics</subject><subject>Transcription Factor RelA - metabolism</subject><subject>Tumor cell lines</subject><subject>Tumor Suppressor Protein p53 - genetics</subject><subject>Tumor Suppressor Protein p53 - metabolism</subject><subject>Tumors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNp1Us1uEzEQXiEQLYU3QGCJ8wb_23tBKhWBShVc6Nma2LPJRs56sTdIeTUegmdi02yr9sDJ1sx8P5r5quotowsmDPu4TfvcQ1wMqccFpQ1lSj2rzlkjeK05Fc8f_c-qV6VsKVXCav2yOuNSWcOVOq-6S-LTbsC-wJjygeQUkaSWfF_Wf_98JmMigxKk60nGMikVPJZUvbytV1AwEL_BXRo3mGE4kDZlsoYy5s4TD73HTDzGSGLXY3ldvWghFnwzvxfV7fLLz6tv9c2Pr9dXlze1V1yPtQBpgAsteWDSKIVoTUBtRWNWICQEtgKwU8uADtRq0IY31LMmaNNyoOKien_iHWIqbt5ScUxRQbVttJomrk8TIcHWDbnbQT64BJ27K6S8dpDHzkd0ikpsgtdSCynvHDDTSLS2tSJMC5y4Ps1q-9UOg8d-zBCfkD7t9N3GrdNvJxphJJcTwYeZIKdfeyzjfyzL05TPqZSM7YMCo-4Yh3uUO8bBzXGYYO8eu3sA3d9f_ANxu7KA</recordid><startdate>20140227</startdate><enddate>20140227</enddate><creator>Endo, Fumitaka</creator><creator>Nishizuka, Satoshi S</creator><creator>Kume, Kohei</creator><creator>Ishida, Kazushige</creator><creator>Katagiri, Hirokatsu</creator><creator>Ishida, Kaoru</creator><creator>Sato, Kei</creator><creator>Iwaya, Takeshi</creator><creator>Koeda, Keisuke</creator><creator>Wakabayashi, Go</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140227</creationdate><title>A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines</title><author>Endo, Fumitaka ; Nishizuka, Satoshi S ; Kume, Kohei ; Ishida, Kazushige ; Katagiri, Hirokatsu ; Ishida, Kaoru ; Sato, Kei ; Iwaya, Takeshi ; Koeda, Keisuke ; Wakabayashi, Go</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-3a47a23642d14755ee87de68397ba34ad1baa81477a6d086a67290c19d67f2a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antimetabolites, Antineoplastic - pharmacology</topic><topic>Antimetabolites, Antineoplastic - therapeutic use</topic><topic>Apoptosis</topic><topic>Bioindicators</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Biotechnology</topic><topic>Breast cancer</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cell Line, Tumor</topic><topic>Chemotherapy</topic><topic>Codon</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Fluorouracil - pharmacology</topic><topic>Fluorouracil - therapeutic use</topic><topic>Gastric cancer</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Knockdown Techniques</topic><topic>Health risk assessment</topic><topic>Homozygosity</topic><topic>Humans</topic><topic>Laboratories</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>NF-kappa B - metabolism</topic><topic>NF-κB protein</topic><topic>p53 Protein</topic><topic>Patients</topic><topic>Polymorphism</topic><topic>Protein Binding</topic><topic>Protein expression</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>RelA protein</topic><topic>Stomach cancer</topic><topic>Stomach Neoplasms - drug therapy</topic><topic>Stomach Neoplasms - genetics</topic><topic>Stomach Neoplasms - metabolism</topic><topic>Surgery</topic><topic>Transcription Factor RelA - genetics</topic><topic>Transcription Factor RelA - metabolism</topic><topic>Tumor cell lines</topic><topic>Tumor Suppressor Protein p53 - genetics</topic><topic>Tumor Suppressor Protein p53 - metabolism</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Endo, Fumitaka</creatorcontrib><creatorcontrib>Nishizuka, Satoshi S</creatorcontrib><creatorcontrib>Kume, Kohei</creatorcontrib><creatorcontrib>Ishida, Kazushige</creatorcontrib><creatorcontrib>Katagiri, Hirokatsu</creatorcontrib><creatorcontrib>Ishida, Kaoru</creatorcontrib><creatorcontrib>Sato, Kei</creatorcontrib><creatorcontrib>Iwaya, Takeshi</creatorcontrib><creatorcontrib>Koeda, Keisuke</creatorcontrib><creatorcontrib>Wakabayashi, Go</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Endo, Fumitaka</au><au>Nishizuka, Satoshi S</au><au>Kume, Kohei</au><au>Ishida, Kazushige</au><au>Katagiri, Hirokatsu</au><au>Ishida, Kaoru</au><au>Sato, Kei</au><au>Iwaya, Takeshi</au><au>Koeda, Keisuke</au><au>Wakabayashi, Go</au><au>Hofmann, Thomas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-27</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e90155</spage><pages>e90155-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Despite of remarkable improvement of postoperative 5-FU-based adjuvant chemotherapy, the relapse rate of gastric cancer patients who undergo curative resection followed by the adjuvant chemotherapy remains substantial. Therefore, it is important to identify prediction markers for the chemotherapeutic efficacy of 5-FU. We recently identified NF-κB as a candidate relapse prediction biomarker in gastric cancer. To evaluate the biological significance of NF-κB in the context of 5-FU-based chemotherapy, we analyzed the NF-κB-dependent biological response upon 5-FU treatment in gastric cancer cell lines. Seven genes induced by 5-FU treatment in an NF-κB-dependent manner were identified, five of which are known p53 targets. Knockdown of RELA, which encodes the p65 subunit of NF-κB, decreased both p53 and p53 target protein levels. In contrast, NF-κB was not affected by TP53 knockdown. We also demonstrated that cell lines bearing Pro/Pro homozygosity in codon72 of p53 exon4, which is important for NF-κB binding to p53, are more resistant to 5-FU than those with Arg/Arg homozygosity. We conclude that NF-κB plays an important role in the response to 5-FU treatment in gastric cancer cell lines, with a possible compensatory function of p53. These results suggest that NF-κB is a potential 5-FU-chemosensitivity prediction marker that may reflect 5-FU-induced stress-response pathways, including p53.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24587255</pmid><doi>10.1371/journal.pone.0090155</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-02, Vol.9 (2), p.e90155 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1503068965 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Antimetabolites, Antineoplastic - pharmacology Antimetabolites, Antineoplastic - therapeutic use Apoptosis Bioindicators Biology Biomarkers Biotechnology Breast cancer Cancer Cancer therapies Cell Line, Tumor Chemotherapy Codon Drug Resistance, Neoplasm - genetics Fluorouracil - pharmacology Fluorouracil - therapeutic use Gastric cancer Gene Expression Profiling Gene Expression Regulation, Neoplastic - drug effects Gene Knockdown Techniques Health risk assessment Homozygosity Humans Laboratories Medical prognosis Medicine NF-kappa B - metabolism NF-κB protein p53 Protein Patients Polymorphism Protein Binding Protein expression Protein Transport Proteins RelA protein Stomach cancer Stomach Neoplasms - drug therapy Stomach Neoplasms - genetics Stomach Neoplasms - metabolism Surgery Transcription Factor RelA - genetics Transcription Factor RelA - metabolism Tumor cell lines Tumor Suppressor Protein p53 - genetics Tumor Suppressor Protein p53 - metabolism Tumors |
title | A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T12%3A33%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20compensatory%20role%20of%20NF-%CE%BAB%20to%20p53%20in%20response%20to%205-FU-based%20chemotherapy%20for%20gastric%20cancer%20cell%20lines&rft.jtitle=PloS%20one&rft.au=Endo,%20Fumitaka&rft.date=2014-02-27&rft.volume=9&rft.issue=2&rft.spage=e90155&rft.pages=e90155-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0090155&rft_dat=%3Cproquest_plos_%3E3232539171%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503068965&rft_id=info:pmid/24587255&rft_doaj_id=oai_doaj_org_article_504e9dc64634497ba31794e88f83d255&rfr_iscdi=true |