Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito
Antimalarial drugs may impact mosquito's defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An....
Gespeichert in:
Veröffentlicht in: | PloS one 2014-02, Vol.9 (2), p.e89473 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e89473 |
container_title | PloS one |
container_volume | 9 |
creator | Zhang, Jian Zhang, Shuguang Wang, Yanyan Xu, Wenyue Zhang, Jingru Jiang, Haobo Huang, Fusheng |
description | Antimalarial drugs may impact mosquito's defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite.
We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity.
Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug's impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species. |
doi_str_mv | 10.1371/journal.pone.0089473 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1501614171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478794107</galeid><doaj_id>oai_doaj_org_article_58097ef633a242029d4f07e876cf8881</doaj_id><sourcerecordid>A478794107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1114a8a0f9b641fbe22b80f6d941f465c724e8f01ab14fde87e918e6a4d86e2f3</originalsourceid><addsrcrecordid>eNqNk-2K1DAUhoso7rp6B6IBQRCcMWkzafpHGBY_BlZW_Pob0vakkyVNxiSVnUvwrk13ussUFCSFnKbPeU_6ck6WPSV4SYqSvLlyg7fSLHfOwhJjXtGyuJedkqrIFyzHxf2j-CR7FMIVxquCM_YwO8npijOO6Wn2-5NrByOjdhY5hdbW7bZgIKAQIUU2aNSBBQTXOw8hjFi9R1ZH734O2sJrJG16ou6lkV5Lg1o_dEh2UtsQ0WcjQ-9aPfRo78BojbRV0NyU0xbFLaDehaQU3ePsgZImwJNpP8u-v3_37fzj4uLyw-Z8fbFoWJXHBSGESi6xqmpGiaohz2uOFWur9EbZqilzClxhImtCVQu8hIpwYJK2nEGuirPs-UF3Z1wQk4tBkBUmjFBSkkRsDkTr5JXY-fRvfi-c1OLmwPlOSB91Y0CsOK5KUKwoZE5znFctVbhMRVmjOOej1tup2lD30DZgo5dmJjr_YvVWdO6XKKqiWFGaBF5MAqPjEOI_rjxRnUy3Sh67JNb0OjRiTUteJnNwmajlX6i0Wuh1k_pI6XQ-S3g1S0hMhOvYySEEsfn65f_Zyx9z9uURuwVp4jY4M4x9EeYgPYCNdyF4UHfOESzGMbh1Q4xjIKYxSGnPjl2_S7rt--IPSbYFQg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501614171</pqid></control><display><type>article</type><title>Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Jian ; Zhang, Shuguang ; Wang, Yanyan ; Xu, Wenyue ; Zhang, Jingru ; Jiang, Haobo ; Huang, Fusheng</creator><contributor>Pradel, Gabriele</contributor><creatorcontrib>Zhang, Jian ; Zhang, Shuguang ; Wang, Yanyan ; Xu, Wenyue ; Zhang, Jingru ; Jiang, Haobo ; Huang, Fusheng ; Pradel, Gabriele</creatorcontrib><description>Antimalarial drugs may impact mosquito's defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite.
We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity.
Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug's impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0089473</identifier><identifier>PMID: 24586804</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Anopheles ; Anopheles - genetics ; Anopheles - parasitology ; Anopheles gambiae ; Anopheles stephensi ; Antimalarials - pharmacology ; Aquatic insects ; Biology ; Cell activation ; Cell adhesion ; Cellular signal transduction ; Culicidae ; Culicidae - genetics ; Culicidae - parasitology ; Cytoskeleton ; Data analysis ; Data processing ; Disease transmission ; Drosophila ; Drugs ; Epidemics ; Epidemiology ; Female ; Females ; Gene expression ; Gene sequencing ; Genes ; Health aspects ; Immunosuppressive agents ; Infection ; Infection control ; Infections ; Infectivity ; Information management ; Insect Vectors - drug effects ; Insect Vectors - genetics ; Insects ; Kinases ; Malaria ; Malaria - drug therapy ; Malaria - parasitology ; Manduca sexta ; Medical research ; Medicine ; Mortality ; Mosquitoes ; Multiprocessing ; Oxidative stress ; Parasites ; Pattern recognition ; Plant pathology ; Plasmodium ; Plasmodium yoelii ; Plasmodium yoelii - drug effects ; Prophenoloxidase ; Proteins ; Quinazolines - pharmacology ; Rodents ; Signal processing ; Transcription ; Transcription (Genetics) ; Transcriptome - drug effects ; Transcriptome - genetics ; Transduction</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e89473</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Zhang et al 2014 Zhang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1114a8a0f9b641fbe22b80f6d941f465c724e8f01ab14fde87e918e6a4d86e2f3</citedby><cites>FETCH-LOGICAL-c692t-1114a8a0f9b641fbe22b80f6d941f465c724e8f01ab14fde87e918e6a4d86e2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933544/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933544/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24586804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pradel, Gabriele</contributor><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Shuguang</creatorcontrib><creatorcontrib>Wang, Yanyan</creatorcontrib><creatorcontrib>Xu, Wenyue</creatorcontrib><creatorcontrib>Zhang, Jingru</creatorcontrib><creatorcontrib>Jiang, Haobo</creatorcontrib><creatorcontrib>Huang, Fusheng</creatorcontrib><title>Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Antimalarial drugs may impact mosquito's defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite.
We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity.
Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug's impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.</description><subject>Analysis</subject><subject>Animals</subject><subject>Anopheles</subject><subject>Anopheles - genetics</subject><subject>Anopheles - parasitology</subject><subject>Anopheles gambiae</subject><subject>Anopheles stephensi</subject><subject>Antimalarials - pharmacology</subject><subject>Aquatic insects</subject><subject>Biology</subject><subject>Cell activation</subject><subject>Cell adhesion</subject><subject>Cellular signal transduction</subject><subject>Culicidae</subject><subject>Culicidae - genetics</subject><subject>Culicidae - parasitology</subject><subject>Cytoskeleton</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Disease transmission</subject><subject>Drosophila</subject><subject>Drugs</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Females</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Health aspects</subject><subject>Immunosuppressive agents</subject><subject>Infection</subject><subject>Infection control</subject><subject>Infections</subject><subject>Infectivity</subject><subject>Information management</subject><subject>Insect Vectors - drug effects</subject><subject>Insect Vectors - genetics</subject><subject>Insects</subject><subject>Kinases</subject><subject>Malaria</subject><subject>Malaria - drug therapy</subject><subject>Malaria - parasitology</subject><subject>Manduca sexta</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mortality</subject><subject>Mosquitoes</subject><subject>Multiprocessing</subject><subject>Oxidative stress</subject><subject>Parasites</subject><subject>Pattern recognition</subject><subject>Plant pathology</subject><subject>Plasmodium</subject><subject>Plasmodium yoelii</subject><subject>Plasmodium yoelii - drug effects</subject><subject>Prophenoloxidase</subject><subject>Proteins</subject><subject>Quinazolines - pharmacology</subject><subject>Rodents</subject><subject>Signal processing</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcriptome - drug effects</subject><subject>Transcriptome - genetics</subject><subject>Transduction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk-2K1DAUhoso7rp6B6IBQRCcMWkzafpHGBY_BlZW_Pob0vakkyVNxiSVnUvwrk13ussUFCSFnKbPeU_6ck6WPSV4SYqSvLlyg7fSLHfOwhJjXtGyuJedkqrIFyzHxf2j-CR7FMIVxquCM_YwO8npijOO6Wn2-5NrByOjdhY5hdbW7bZgIKAQIUU2aNSBBQTXOw8hjFi9R1ZH734O2sJrJG16ou6lkV5Lg1o_dEh2UtsQ0WcjQ-9aPfRo78BojbRV0NyU0xbFLaDehaQU3ePsgZImwJNpP8u-v3_37fzj4uLyw-Z8fbFoWJXHBSGESi6xqmpGiaohz2uOFWur9EbZqilzClxhImtCVQu8hIpwYJK2nEGuirPs-UF3Z1wQk4tBkBUmjFBSkkRsDkTr5JXY-fRvfi-c1OLmwPlOSB91Y0CsOK5KUKwoZE5znFctVbhMRVmjOOej1tup2lD30DZgo5dmJjr_YvVWdO6XKKqiWFGaBF5MAqPjEOI_rjxRnUy3Sh67JNb0OjRiTUteJnNwmajlX6i0Wuh1k_pI6XQ-S3g1S0hMhOvYySEEsfn65f_Zyx9z9uURuwVp4jY4M4x9EeYgPYCNdyF4UHfOESzGMbh1Q4xjIKYxSGnPjl2_S7rt--IPSbYFQg</recordid><startdate>20140224</startdate><enddate>20140224</enddate><creator>Zhang, Jian</creator><creator>Zhang, Shuguang</creator><creator>Wang, Yanyan</creator><creator>Xu, Wenyue</creator><creator>Zhang, Jingru</creator><creator>Jiang, Haobo</creator><creator>Huang, Fusheng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140224</creationdate><title>Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito</title><author>Zhang, Jian ; Zhang, Shuguang ; Wang, Yanyan ; Xu, Wenyue ; Zhang, Jingru ; Jiang, Haobo ; Huang, Fusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1114a8a0f9b641fbe22b80f6d941f465c724e8f01ab14fde87e918e6a4d86e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Anopheles</topic><topic>Anopheles - genetics</topic><topic>Anopheles - parasitology</topic><topic>Anopheles gambiae</topic><topic>Anopheles stephensi</topic><topic>Antimalarials - pharmacology</topic><topic>Aquatic insects</topic><topic>Biology</topic><topic>Cell activation</topic><topic>Cell adhesion</topic><topic>Cellular signal transduction</topic><topic>Culicidae</topic><topic>Culicidae - genetics</topic><topic>Culicidae - parasitology</topic><topic>Cytoskeleton</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Disease transmission</topic><topic>Drosophila</topic><topic>Drugs</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Females</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Health aspects</topic><topic>Immunosuppressive agents</topic><topic>Infection</topic><topic>Infection control</topic><topic>Infections</topic><topic>Infectivity</topic><topic>Information management</topic><topic>Insect Vectors - drug effects</topic><topic>Insect Vectors - genetics</topic><topic>Insects</topic><topic>Kinases</topic><topic>Malaria</topic><topic>Malaria - drug therapy</topic><topic>Malaria - parasitology</topic><topic>Manduca sexta</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mortality</topic><topic>Mosquitoes</topic><topic>Multiprocessing</topic><topic>Oxidative stress</topic><topic>Parasites</topic><topic>Pattern recognition</topic><topic>Plant pathology</topic><topic>Plasmodium</topic><topic>Plasmodium yoelii</topic><topic>Plasmodium yoelii - drug effects</topic><topic>Prophenoloxidase</topic><topic>Proteins</topic><topic>Quinazolines - pharmacology</topic><topic>Rodents</topic><topic>Signal processing</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcriptome - drug effects</topic><topic>Transcriptome - genetics</topic><topic>Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Shuguang</creatorcontrib><creatorcontrib>Wang, Yanyan</creatorcontrib><creatorcontrib>Xu, Wenyue</creatorcontrib><creatorcontrib>Zhang, Jingru</creatorcontrib><creatorcontrib>Jiang, Haobo</creatorcontrib><creatorcontrib>Huang, Fusheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jian</au><au>Zhang, Shuguang</au><au>Wang, Yanyan</au><au>Xu, Wenyue</au><au>Zhang, Jingru</au><au>Jiang, Haobo</au><au>Huang, Fusheng</au><au>Pradel, Gabriele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-24</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e89473</spage><pages>e89473-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Antimalarial drugs may impact mosquito's defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite.
We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity.
Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug's impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24586804</pmid><doi>10.1371/journal.pone.0089473</doi><tpages>e89473</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-02, Vol.9 (2), p.e89473 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1501614171 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Animals Anopheles Anopheles - genetics Anopheles - parasitology Anopheles gambiae Anopheles stephensi Antimalarials - pharmacology Aquatic insects Biology Cell activation Cell adhesion Cellular signal transduction Culicidae Culicidae - genetics Culicidae - parasitology Cytoskeleton Data analysis Data processing Disease transmission Drosophila Drugs Epidemics Epidemiology Female Females Gene expression Gene sequencing Genes Health aspects Immunosuppressive agents Infection Infection control Infections Infectivity Information management Insect Vectors - drug effects Insect Vectors - genetics Insects Kinases Malaria Malaria - drug therapy Malaria - parasitology Manduca sexta Medical research Medicine Mortality Mosquitoes Multiprocessing Oxidative stress Parasites Pattern recognition Plant pathology Plasmodium Plasmodium yoelii Plasmodium yoelii - drug effects Prophenoloxidase Proteins Quinazolines - pharmacology Rodents Signal processing Transcription Transcription (Genetics) Transcriptome - drug effects Transcriptome - genetics Transduction |
title | Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20Anopheles%20stephensi%20gene%20expression%20by%20nitroquine,%20an%20antimalarial%20drug%20against%20Plasmodium%20yoelii%20infection%20in%20the%20mosquito&rft.jtitle=PloS%20one&rft.au=Zhang,%20Jian&rft.date=2014-02-24&rft.volume=9&rft.issue=2&rft.spage=e89473&rft.pages=e89473-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0089473&rft_dat=%3Cgale_plos_%3EA478794107%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501614171&rft_id=info:pmid/24586804&rft_galeid=A478794107&rft_doaj_id=oai_doaj_org_article_58097ef633a242029d4f07e876cf8881&rfr_iscdi=true |