Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito

Antimalarial drugs may impact mosquito's defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-02, Vol.9 (2), p.e89473
Hauptverfasser: Zhang, Jian, Zhang, Shuguang, Wang, Yanyan, Xu, Wenyue, Zhang, Jingru, Jiang, Haobo, Huang, Fusheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page e89473
container_title PloS one
container_volume 9
creator Zhang, Jian
Zhang, Shuguang
Wang, Yanyan
Xu, Wenyue
Zhang, Jingru
Jiang, Haobo
Huang, Fusheng
description Antimalarial drugs may impact mosquito's defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite. We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity. Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug's impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.
doi_str_mv 10.1371/journal.pone.0089473
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1501614171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478794107</galeid><doaj_id>oai_doaj_org_article_58097ef633a242029d4f07e876cf8881</doaj_id><sourcerecordid>A478794107</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-1114a8a0f9b641fbe22b80f6d941f465c724e8f01ab14fde87e918e6a4d86e2f3</originalsourceid><addsrcrecordid>eNqNk-2K1DAUhoso7rp6B6IBQRCcMWkzafpHGBY_BlZW_Pob0vakkyVNxiSVnUvwrk13ussUFCSFnKbPeU_6ck6WPSV4SYqSvLlyg7fSLHfOwhJjXtGyuJedkqrIFyzHxf2j-CR7FMIVxquCM_YwO8npijOO6Wn2-5NrByOjdhY5hdbW7bZgIKAQIUU2aNSBBQTXOw8hjFi9R1ZH734O2sJrJG16ou6lkV5Lg1o_dEh2UtsQ0WcjQ-9aPfRo78BojbRV0NyU0xbFLaDehaQU3ePsgZImwJNpP8u-v3_37fzj4uLyw-Z8fbFoWJXHBSGESi6xqmpGiaohz2uOFWur9EbZqilzClxhImtCVQu8hIpwYJK2nEGuirPs-UF3Z1wQk4tBkBUmjFBSkkRsDkTr5JXY-fRvfi-c1OLmwPlOSB91Y0CsOK5KUKwoZE5znFctVbhMRVmjOOej1tup2lD30DZgo5dmJjr_YvVWdO6XKKqiWFGaBF5MAqPjEOI_rjxRnUy3Sh67JNb0OjRiTUteJnNwmajlX6i0Wuh1k_pI6XQ-S3g1S0hMhOvYySEEsfn65f_Zyx9z9uURuwVp4jY4M4x9EeYgPYCNdyF4UHfOESzGMbh1Q4xjIKYxSGnPjl2_S7rt--IPSbYFQg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1501614171</pqid></control><display><type>article</type><title>Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Jian ; Zhang, Shuguang ; Wang, Yanyan ; Xu, Wenyue ; Zhang, Jingru ; Jiang, Haobo ; Huang, Fusheng</creator><contributor>Pradel, Gabriele</contributor><creatorcontrib>Zhang, Jian ; Zhang, Shuguang ; Wang, Yanyan ; Xu, Wenyue ; Zhang, Jingru ; Jiang, Haobo ; Huang, Fusheng ; Pradel, Gabriele</creatorcontrib><description>Antimalarial drugs may impact mosquito's defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite. We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity. Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug's impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0089473</identifier><identifier>PMID: 24586804</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Anopheles ; Anopheles - genetics ; Anopheles - parasitology ; Anopheles gambiae ; Anopheles stephensi ; Antimalarials - pharmacology ; Aquatic insects ; Biology ; Cell activation ; Cell adhesion ; Cellular signal transduction ; Culicidae ; Culicidae - genetics ; Culicidae - parasitology ; Cytoskeleton ; Data analysis ; Data processing ; Disease transmission ; Drosophila ; Drugs ; Epidemics ; Epidemiology ; Female ; Females ; Gene expression ; Gene sequencing ; Genes ; Health aspects ; Immunosuppressive agents ; Infection ; Infection control ; Infections ; Infectivity ; Information management ; Insect Vectors - drug effects ; Insect Vectors - genetics ; Insects ; Kinases ; Malaria ; Malaria - drug therapy ; Malaria - parasitology ; Manduca sexta ; Medical research ; Medicine ; Mortality ; Mosquitoes ; Multiprocessing ; Oxidative stress ; Parasites ; Pattern recognition ; Plant pathology ; Plasmodium ; Plasmodium yoelii ; Plasmodium yoelii - drug effects ; Prophenoloxidase ; Proteins ; Quinazolines - pharmacology ; Rodents ; Signal processing ; Transcription ; Transcription (Genetics) ; Transcriptome - drug effects ; Transcriptome - genetics ; Transduction</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e89473</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Zhang et al 2014 Zhang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-1114a8a0f9b641fbe22b80f6d941f465c724e8f01ab14fde87e918e6a4d86e2f3</citedby><cites>FETCH-LOGICAL-c692t-1114a8a0f9b641fbe22b80f6d941f465c724e8f01ab14fde87e918e6a4d86e2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933544/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3933544/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24586804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pradel, Gabriele</contributor><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Shuguang</creatorcontrib><creatorcontrib>Wang, Yanyan</creatorcontrib><creatorcontrib>Xu, Wenyue</creatorcontrib><creatorcontrib>Zhang, Jingru</creatorcontrib><creatorcontrib>Jiang, Haobo</creatorcontrib><creatorcontrib>Huang, Fusheng</creatorcontrib><title>Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Antimalarial drugs may impact mosquito's defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite. We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity. Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug's impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.</description><subject>Analysis</subject><subject>Animals</subject><subject>Anopheles</subject><subject>Anopheles - genetics</subject><subject>Anopheles - parasitology</subject><subject>Anopheles gambiae</subject><subject>Anopheles stephensi</subject><subject>Antimalarials - pharmacology</subject><subject>Aquatic insects</subject><subject>Biology</subject><subject>Cell activation</subject><subject>Cell adhesion</subject><subject>Cellular signal transduction</subject><subject>Culicidae</subject><subject>Culicidae - genetics</subject><subject>Culicidae - parasitology</subject><subject>Cytoskeleton</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Disease transmission</subject><subject>Drosophila</subject><subject>Drugs</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Females</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Health aspects</subject><subject>Immunosuppressive agents</subject><subject>Infection</subject><subject>Infection control</subject><subject>Infections</subject><subject>Infectivity</subject><subject>Information management</subject><subject>Insect Vectors - drug effects</subject><subject>Insect Vectors - genetics</subject><subject>Insects</subject><subject>Kinases</subject><subject>Malaria</subject><subject>Malaria - drug therapy</subject><subject>Malaria - parasitology</subject><subject>Manduca sexta</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Mortality</subject><subject>Mosquitoes</subject><subject>Multiprocessing</subject><subject>Oxidative stress</subject><subject>Parasites</subject><subject>Pattern recognition</subject><subject>Plant pathology</subject><subject>Plasmodium</subject><subject>Plasmodium yoelii</subject><subject>Plasmodium yoelii - drug effects</subject><subject>Prophenoloxidase</subject><subject>Proteins</subject><subject>Quinazolines - pharmacology</subject><subject>Rodents</subject><subject>Signal processing</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><subject>Transcriptome - drug effects</subject><subject>Transcriptome - genetics</subject><subject>Transduction</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk-2K1DAUhoso7rp6B6IBQRCcMWkzafpHGBY_BlZW_Pob0vakkyVNxiSVnUvwrk13ussUFCSFnKbPeU_6ck6WPSV4SYqSvLlyg7fSLHfOwhJjXtGyuJedkqrIFyzHxf2j-CR7FMIVxquCM_YwO8npijOO6Wn2-5NrByOjdhY5hdbW7bZgIKAQIUU2aNSBBQTXOw8hjFi9R1ZH734O2sJrJG16ou6lkV5Lg1o_dEh2UtsQ0WcjQ-9aPfRo78BojbRV0NyU0xbFLaDehaQU3ePsgZImwJNpP8u-v3_37fzj4uLyw-Z8fbFoWJXHBSGESi6xqmpGiaohz2uOFWur9EbZqilzClxhImtCVQu8hIpwYJK2nEGuirPs-UF3Z1wQk4tBkBUmjFBSkkRsDkTr5JXY-fRvfi-c1OLmwPlOSB91Y0CsOK5KUKwoZE5znFctVbhMRVmjOOej1tup2lD30DZgo5dmJjr_YvVWdO6XKKqiWFGaBF5MAqPjEOI_rjxRnUy3Sh67JNb0OjRiTUteJnNwmajlX6i0Wuh1k_pI6XQ-S3g1S0hMhOvYySEEsfn65f_Zyx9z9uURuwVp4jY4M4x9EeYgPYCNdyF4UHfOESzGMbh1Q4xjIKYxSGnPjl2_S7rt--IPSbYFQg</recordid><startdate>20140224</startdate><enddate>20140224</enddate><creator>Zhang, Jian</creator><creator>Zhang, Shuguang</creator><creator>Wang, Yanyan</creator><creator>Xu, Wenyue</creator><creator>Zhang, Jingru</creator><creator>Jiang, Haobo</creator><creator>Huang, Fusheng</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140224</creationdate><title>Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito</title><author>Zhang, Jian ; Zhang, Shuguang ; Wang, Yanyan ; Xu, Wenyue ; Zhang, Jingru ; Jiang, Haobo ; Huang, Fusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-1114a8a0f9b641fbe22b80f6d941f465c724e8f01ab14fde87e918e6a4d86e2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Anopheles</topic><topic>Anopheles - genetics</topic><topic>Anopheles - parasitology</topic><topic>Anopheles gambiae</topic><topic>Anopheles stephensi</topic><topic>Antimalarials - pharmacology</topic><topic>Aquatic insects</topic><topic>Biology</topic><topic>Cell activation</topic><topic>Cell adhesion</topic><topic>Cellular signal transduction</topic><topic>Culicidae</topic><topic>Culicidae - genetics</topic><topic>Culicidae - parasitology</topic><topic>Cytoskeleton</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Disease transmission</topic><topic>Drosophila</topic><topic>Drugs</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Females</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Health aspects</topic><topic>Immunosuppressive agents</topic><topic>Infection</topic><topic>Infection control</topic><topic>Infections</topic><topic>Infectivity</topic><topic>Information management</topic><topic>Insect Vectors - drug effects</topic><topic>Insect Vectors - genetics</topic><topic>Insects</topic><topic>Kinases</topic><topic>Malaria</topic><topic>Malaria - drug therapy</topic><topic>Malaria - parasitology</topic><topic>Manduca sexta</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Mortality</topic><topic>Mosquitoes</topic><topic>Multiprocessing</topic><topic>Oxidative stress</topic><topic>Parasites</topic><topic>Pattern recognition</topic><topic>Plant pathology</topic><topic>Plasmodium</topic><topic>Plasmodium yoelii</topic><topic>Plasmodium yoelii - drug effects</topic><topic>Prophenoloxidase</topic><topic>Proteins</topic><topic>Quinazolines - pharmacology</topic><topic>Rodents</topic><topic>Signal processing</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><topic>Transcriptome - drug effects</topic><topic>Transcriptome - genetics</topic><topic>Transduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Shuguang</creatorcontrib><creatorcontrib>Wang, Yanyan</creatorcontrib><creatorcontrib>Xu, Wenyue</creatorcontrib><creatorcontrib>Zhang, Jingru</creatorcontrib><creatorcontrib>Jiang, Haobo</creatorcontrib><creatorcontrib>Huang, Fusheng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jian</au><au>Zhang, Shuguang</au><au>Wang, Yanyan</au><au>Xu, Wenyue</au><au>Zhang, Jingru</au><au>Jiang, Haobo</au><au>Huang, Fusheng</au><au>Pradel, Gabriele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-24</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e89473</spage><pages>e89473-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Antimalarial drugs may impact mosquito's defense against Plasmodium parasites. Our previous study showed nitroquine significantly reduced infection of Anopheles stephensi by Plasmodium yoelii, but the underlying mechanism remains unclear. In order to understand how transmission capacity of An. stephensi was affected by nitroquine, we explored the transcriptome of adult females after different treatments, examined changes in gene expression profiles, and identified transcripts affected by the drug and parasite. We extended massively parallel sequencing and data analysis (including gene discovery, expression profiling, and function prediction) to An. stephensi before and after Plasmodium infection with or without nitroquine treatment. Using numbers of reads assembled into specific contigs to calculate relative abundances (RAs), we categorized the assembled contigs into four groups according to the differences in RA values infection induced, infection suppressed, drug induced, and drug suppressed. We found both nitroquine in the blood meal and Plasmodium infection altered transcription of mosquito genes implicated in diverse processes, including pathogen recognition, signal transduction, prophenoloxidase activation, cytoskeleton assembling, cell adhesion, and oxidative stress. The differential gene expression may have promoted certain defense responses of An. stephensi against the parasite and decreased its infectivity. Our study indicated that nitroquine may regulate several immune mechanisms at the level of gene transcription in the mosquito against Plasmodium infection. This highlights the need for better understanding of antimalarial drug's impact on parasite survival and transmission. In addition, our data largely enriched the existing sequence information of An. stephensi, an epidemiologically important vector species.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24586804</pmid><doi>10.1371/journal.pone.0089473</doi><tpages>e89473</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-02, Vol.9 (2), p.e89473
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1501614171
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Animals
Anopheles
Anopheles - genetics
Anopheles - parasitology
Anopheles gambiae
Anopheles stephensi
Antimalarials - pharmacology
Aquatic insects
Biology
Cell activation
Cell adhesion
Cellular signal transduction
Culicidae
Culicidae - genetics
Culicidae - parasitology
Cytoskeleton
Data analysis
Data processing
Disease transmission
Drosophila
Drugs
Epidemics
Epidemiology
Female
Females
Gene expression
Gene sequencing
Genes
Health aspects
Immunosuppressive agents
Infection
Infection control
Infections
Infectivity
Information management
Insect Vectors - drug effects
Insect Vectors - genetics
Insects
Kinases
Malaria
Malaria - drug therapy
Malaria - parasitology
Manduca sexta
Medical research
Medicine
Mortality
Mosquitoes
Multiprocessing
Oxidative stress
Parasites
Pattern recognition
Plant pathology
Plasmodium
Plasmodium yoelii
Plasmodium yoelii - drug effects
Prophenoloxidase
Proteins
Quinazolines - pharmacology
Rodents
Signal processing
Transcription
Transcription (Genetics)
Transcriptome - drug effects
Transcriptome - genetics
Transduction
title Modulation of Anopheles stephensi gene expression by nitroquine, an antimalarial drug against Plasmodium yoelii infection in the mosquito
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modulation%20of%20Anopheles%20stephensi%20gene%20expression%20by%20nitroquine,%20an%20antimalarial%20drug%20against%20Plasmodium%20yoelii%20infection%20in%20the%20mosquito&rft.jtitle=PloS%20one&rft.au=Zhang,%20Jian&rft.date=2014-02-24&rft.volume=9&rft.issue=2&rft.spage=e89473&rft.pages=e89473-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0089473&rft_dat=%3Cgale_plos_%3EA478794107%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1501614171&rft_id=info:pmid/24586804&rft_galeid=A478794107&rft_doaj_id=oai_doaj_org_article_58097ef633a242029d4f07e876cf8881&rfr_iscdi=true