Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints
Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elus...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-02, Vol.9 (2), p.e87135-e87135 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e87135 |
---|---|
container_issue | 2 |
container_start_page | e87135 |
container_title | PloS one |
container_volume | 9 |
creator | Jayasundar, Jayant James Xing, Jun Robinson, John M Cheung, Herbert C Dong, Wen-Ji |
description | Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+)-free and saturating Ca(2+) conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+)-saturated structure, the absence of regulatory Ca(2+) perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+), induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+) the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation. |
doi_str_mv | 10.1371/journal.pone.0087135 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1499826445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478801952</galeid><doaj_id>oai_doaj_org_article_c066a69b554b4ac9b5a5965bcaee941d</doaj_id><sourcerecordid>A478801952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ba8b3187813d72f3de77cd7a38dac495857e5a4a52977bd9ebc8fc39aa72034a3</originalsourceid><addsrcrecordid>eNqNk8Fu1DAQhiMEoqXwBggsISE47BLHdmxfkKqqhUpFlUrhak1sZ9erbLzYDrRvj7ebVhvUA8oh1uSbfzK_Z4riNS7nmHD8aeWH0EM33_jezstScEzYk-IQS1LN6qokT_fOB8WLGFdlyYio6-fFQUUZE6Rmh8Xqm--sHjoIyNz2sHY6oujWOZCc7yPyLUpLizQE40CjFHyu53qk_XrT2Ru0saH1YW0N-uPSEp1dnV4j42KCXtuIIKJgYwrg-hRfFs9a6KJ9Nb6Pih9np9cnX2cXl1_OT44vZrqWVZo1IBqCBReYGF61xFjOteFAhAFNJROMWwYUWCU5b4y0jRatJhKA504pkKPi7U530_moRpuiwlRKUdWUskyc7wjjYaU2wa0h3CoPTt0FfFgoCMnpzipd1jXUsmGMNhR0PgCTNWs0WCspNlnr81htaLIN2va53W4iOv3Su6Va-N-KyErgkmaBD6NA8L-G7JZau6ht10Fv_ZD_m5Xb-8Y1z-i7f9DHuxupBeQGXN_6XFdvRdUx5UKUWLIqU_NHqPwYm4cgz1TrcnyS8HGSkJlkb9IChhjV-fer_2cvf07Z93vs0kKXltF3w938TUG6A3XwMQbbPpiMS7W16N4NtV0JNa5ETnuzf0EPSfc7QP4CdjAISQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499826445</pqid></control><display><type>article</type><title>Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Jayasundar, Jayant James ; Xing, Jun ; Robinson, John M ; Cheung, Herbert C ; Dong, Wen-Ji</creator><creatorcontrib>Jayasundar, Jayant James ; Xing, Jun ; Robinson, John M ; Cheung, Herbert C ; Dong, Wen-Ji</creatorcontrib><description>Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+)-free and saturating Ca(2+) conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+)-saturated structure, the absence of regulatory Ca(2+) perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+), induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+) the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0087135</identifier><identifier>PMID: 24558365</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Actins - metabolism ; Analysis ; Animals ; Biochemistry ; Bioengineering ; Biology ; Calcium - metabolism ; Calcium signalling ; Calcium-binding protein ; Cardiac muscle ; Chemical engineering ; Conformation ; Constraints ; Energy transfer ; Fluorescence resonance energy transfer ; Fluorescence Resonance Energy Transfer - methods ; Heart diseases ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Kinases ; Ligands ; Medicine ; Mice ; Models, Statistical ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular machines ; Muscle contraction ; Muscles ; Myocardium - metabolism ; Neurosciences ; Phosphorylation ; Physiology ; Protein Binding ; Protein structure ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Rats ; Recombinant Proteins - chemistry ; Regulation ; Rigidity ; Secondary structure ; Simulation ; Static Electricity ; Switching ; Troponin ; Troponin C ; Troponin C - metabolism ; Troponin I</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e87135-e87135</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Jayasundar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Jayasundar et al 2014 Jayasundar et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ba8b3187813d72f3de77cd7a38dac495857e5a4a52977bd9ebc8fc39aa72034a3</citedby><cites>FETCH-LOGICAL-c692t-ba8b3187813d72f3de77cd7a38dac495857e5a4a52977bd9ebc8fc39aa72034a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928104/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928104/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24558365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayasundar, Jayant James</creatorcontrib><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Robinson, John M</creatorcontrib><creatorcontrib>Cheung, Herbert C</creatorcontrib><creatorcontrib>Dong, Wen-Ji</creatorcontrib><title>Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+)-free and saturating Ca(2+) conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+)-saturated structure, the absence of regulatory Ca(2+) perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+), induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+) the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.</description><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Bioengineering</subject><subject>Biology</subject><subject>Calcium - metabolism</subject><subject>Calcium signalling</subject><subject>Calcium-binding protein</subject><subject>Cardiac muscle</subject><subject>Chemical engineering</subject><subject>Conformation</subject><subject>Constraints</subject><subject>Energy transfer</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Heart diseases</subject><subject>Hydrogen Bonding</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Medicine</subject><subject>Mice</subject><subject>Models, Statistical</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular machines</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Myocardium - metabolism</subject><subject>Neurosciences</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Protein structure</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Rats</subject><subject>Recombinant Proteins - chemistry</subject><subject>Regulation</subject><subject>Rigidity</subject><subject>Secondary structure</subject><subject>Simulation</subject><subject>Static Electricity</subject><subject>Switching</subject><subject>Troponin</subject><subject>Troponin C</subject><subject>Troponin C - metabolism</subject><subject>Troponin I</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8Fu1DAQhiMEoqXwBggsISE47BLHdmxfkKqqhUpFlUrhak1sZ9erbLzYDrRvj7ebVhvUA8oh1uSbfzK_Z4riNS7nmHD8aeWH0EM33_jezstScEzYk-IQS1LN6qokT_fOB8WLGFdlyYio6-fFQUUZE6Rmh8Xqm--sHjoIyNz2sHY6oujWOZCc7yPyLUpLizQE40CjFHyu53qk_XrT2Ru0saH1YW0N-uPSEp1dnV4j42KCXtuIIKJgYwrg-hRfFs9a6KJ9Nb6Pih9np9cnX2cXl1_OT44vZrqWVZo1IBqCBReYGF61xFjOteFAhAFNJROMWwYUWCU5b4y0jRatJhKA504pkKPi7U530_moRpuiwlRKUdWUskyc7wjjYaU2wa0h3CoPTt0FfFgoCMnpzipd1jXUsmGMNhR0PgCTNWs0WCspNlnr81htaLIN2va53W4iOv3Su6Va-N-KyErgkmaBD6NA8L-G7JZau6ht10Fv_ZD_m5Xb-8Y1z-i7f9DHuxupBeQGXN_6XFdvRdUx5UKUWLIqU_NHqPwYm4cgz1TrcnyS8HGSkJlkb9IChhjV-fer_2cvf07Z93vs0kKXltF3w938TUG6A3XwMQbbPpiMS7W16N4NtV0JNa5ETnuzf0EPSfc7QP4CdjAISQ</recordid><startdate>20140218</startdate><enddate>20140218</enddate><creator>Jayasundar, Jayant James</creator><creator>Xing, Jun</creator><creator>Robinson, John M</creator><creator>Cheung, Herbert C</creator><creator>Dong, Wen-Ji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140218</creationdate><title>Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints</title><author>Jayasundar, Jayant James ; Xing, Jun ; Robinson, John M ; Cheung, Herbert C ; Dong, Wen-Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ba8b3187813d72f3de77cd7a38dac495857e5a4a52977bd9ebc8fc39aa72034a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Bioengineering</topic><topic>Biology</topic><topic>Calcium - metabolism</topic><topic>Calcium signalling</topic><topic>Calcium-binding protein</topic><topic>Cardiac muscle</topic><topic>Chemical engineering</topic><topic>Conformation</topic><topic>Constraints</topic><topic>Energy transfer</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Heart diseases</topic><topic>Hydrogen Bonding</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Medicine</topic><topic>Mice</topic><topic>Models, Statistical</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular machines</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Myocardium - metabolism</topic><topic>Neurosciences</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Protein structure</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Rats</topic><topic>Recombinant Proteins - chemistry</topic><topic>Regulation</topic><topic>Rigidity</topic><topic>Secondary structure</topic><topic>Simulation</topic><topic>Static Electricity</topic><topic>Switching</topic><topic>Troponin</topic><topic>Troponin C</topic><topic>Troponin C - metabolism</topic><topic>Troponin I</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayasundar, Jayant James</creatorcontrib><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Robinson, John M</creatorcontrib><creatorcontrib>Cheung, Herbert C</creatorcontrib><creatorcontrib>Dong, Wen-Ji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayasundar, Jayant James</au><au>Xing, Jun</au><au>Robinson, John M</au><au>Cheung, Herbert C</au><au>Dong, Wen-Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-18</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e87135</spage><epage>e87135</epage><pages>e87135-e87135</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+)-free and saturating Ca(2+) conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+)-saturated structure, the absence of regulatory Ca(2+) perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+), induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+) the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24558365</pmid><doi>10.1371/journal.pone.0087135</doi><tpages>e87135</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-02, Vol.9 (2), p.e87135-e87135 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1499826445 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Actin Actins - metabolism Analysis Animals Biochemistry Bioengineering Biology Calcium - metabolism Calcium signalling Calcium-binding protein Cardiac muscle Chemical engineering Conformation Constraints Energy transfer Fluorescence resonance energy transfer Fluorescence Resonance Energy Transfer - methods Heart diseases Hydrogen Bonding Hydrophobic and Hydrophilic Interactions Hydrophobicity Kinases Ligands Medicine Mice Models, Statistical Molecular dynamics Molecular Dynamics Simulation Molecular machines Muscle contraction Muscles Myocardium - metabolism Neurosciences Phosphorylation Physiology Protein Binding Protein structure Protein Structure, Secondary Protein Structure, Tertiary Proteins Rats Recombinant Proteins - chemistry Regulation Rigidity Secondary structure Simulation Static Electricity Switching Troponin Troponin C Troponin C - metabolism Troponin I |
title | Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulations%20of%20the%20cardiac%20troponin%20complex%20performed%20with%20FRET%20distances%20as%20restraints&rft.jtitle=PloS%20one&rft.au=Jayasundar,%20Jayant%20James&rft.date=2014-02-18&rft.volume=9&rft.issue=2&rft.spage=e87135&rft.epage=e87135&rft.pages=e87135-e87135&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0087135&rft_dat=%3Cgale_plos_%3EA478801952%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499826445&rft_id=info:pmid/24558365&rft_galeid=A478801952&rft_doaj_id=oai_doaj_org_article_c066a69b554b4ac9b5a5965bcaee941d&rfr_iscdi=true |