Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints

Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-02, Vol.9 (2), p.e87135-e87135
Hauptverfasser: Jayasundar, Jayant James, Xing, Jun, Robinson, John M, Cheung, Herbert C, Dong, Wen-Ji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e87135
container_issue 2
container_start_page e87135
container_title PloS one
container_volume 9
creator Jayasundar, Jayant James
Xing, Jun
Robinson, John M
Cheung, Herbert C
Dong, Wen-Ji
description Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+)-free and saturating Ca(2+) conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+)-saturated structure, the absence of regulatory Ca(2+) perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+), induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+) the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.
doi_str_mv 10.1371/journal.pone.0087135
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1499826445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478801952</galeid><doaj_id>oai_doaj_org_article_c066a69b554b4ac9b5a5965bcaee941d</doaj_id><sourcerecordid>A478801952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-ba8b3187813d72f3de77cd7a38dac495857e5a4a52977bd9ebc8fc39aa72034a3</originalsourceid><addsrcrecordid>eNqNk8Fu1DAQhiMEoqXwBggsISE47BLHdmxfkKqqhUpFlUrhak1sZ9erbLzYDrRvj7ebVhvUA8oh1uSbfzK_Z4riNS7nmHD8aeWH0EM33_jezstScEzYk-IQS1LN6qokT_fOB8WLGFdlyYio6-fFQUUZE6Rmh8Xqm--sHjoIyNz2sHY6oujWOZCc7yPyLUpLizQE40CjFHyu53qk_XrT2Ru0saH1YW0N-uPSEp1dnV4j42KCXtuIIKJgYwrg-hRfFs9a6KJ9Nb6Pih9np9cnX2cXl1_OT44vZrqWVZo1IBqCBReYGF61xFjOteFAhAFNJROMWwYUWCU5b4y0jRatJhKA504pkKPi7U530_moRpuiwlRKUdWUskyc7wjjYaU2wa0h3CoPTt0FfFgoCMnpzipd1jXUsmGMNhR0PgCTNWs0WCspNlnr81htaLIN2va53W4iOv3Su6Va-N-KyErgkmaBD6NA8L-G7JZau6ht10Fv_ZD_m5Xb-8Y1z-i7f9DHuxupBeQGXN_6XFdvRdUx5UKUWLIqU_NHqPwYm4cgz1TrcnyS8HGSkJlkb9IChhjV-fer_2cvf07Z93vs0kKXltF3w938TUG6A3XwMQbbPpiMS7W16N4NtV0JNa5ETnuzf0EPSfc7QP4CdjAISQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499826445</pqid></control><display><type>article</type><title>Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Jayasundar, Jayant James ; Xing, Jun ; Robinson, John M ; Cheung, Herbert C ; Dong, Wen-Ji</creator><creatorcontrib>Jayasundar, Jayant James ; Xing, Jun ; Robinson, John M ; Cheung, Herbert C ; Dong, Wen-Ji</creatorcontrib><description>Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+)-free and saturating Ca(2+) conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+)-saturated structure, the absence of regulatory Ca(2+) perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+), induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+) the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0087135</identifier><identifier>PMID: 24558365</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Actin ; Actins - metabolism ; Analysis ; Animals ; Biochemistry ; Bioengineering ; Biology ; Calcium - metabolism ; Calcium signalling ; Calcium-binding protein ; Cardiac muscle ; Chemical engineering ; Conformation ; Constraints ; Energy transfer ; Fluorescence resonance energy transfer ; Fluorescence Resonance Energy Transfer - methods ; Heart diseases ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Kinases ; Ligands ; Medicine ; Mice ; Models, Statistical ; Molecular dynamics ; Molecular Dynamics Simulation ; Molecular machines ; Muscle contraction ; Muscles ; Myocardium - metabolism ; Neurosciences ; Phosphorylation ; Physiology ; Protein Binding ; Protein structure ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins ; Rats ; Recombinant Proteins - chemistry ; Regulation ; Rigidity ; Secondary structure ; Simulation ; Static Electricity ; Switching ; Troponin ; Troponin C ; Troponin C - metabolism ; Troponin I</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e87135-e87135</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Jayasundar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Jayasundar et al 2014 Jayasundar et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-ba8b3187813d72f3de77cd7a38dac495857e5a4a52977bd9ebc8fc39aa72034a3</citedby><cites>FETCH-LOGICAL-c692t-ba8b3187813d72f3de77cd7a38dac495857e5a4a52977bd9ebc8fc39aa72034a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928104/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3928104/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24558365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jayasundar, Jayant James</creatorcontrib><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Robinson, John M</creatorcontrib><creatorcontrib>Cheung, Herbert C</creatorcontrib><creatorcontrib>Dong, Wen-Ji</creatorcontrib><title>Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+)-free and saturating Ca(2+) conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+)-saturated structure, the absence of regulatory Ca(2+) perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+), induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+) the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.</description><subject>Actin</subject><subject>Actins - metabolism</subject><subject>Analysis</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Bioengineering</subject><subject>Biology</subject><subject>Calcium - metabolism</subject><subject>Calcium signalling</subject><subject>Calcium-binding protein</subject><subject>Cardiac muscle</subject><subject>Chemical engineering</subject><subject>Conformation</subject><subject>Constraints</subject><subject>Energy transfer</subject><subject>Fluorescence resonance energy transfer</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Heart diseases</subject><subject>Hydrogen Bonding</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Kinases</subject><subject>Ligands</subject><subject>Medicine</subject><subject>Mice</subject><subject>Models, Statistical</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular machines</subject><subject>Muscle contraction</subject><subject>Muscles</subject><subject>Myocardium - metabolism</subject><subject>Neurosciences</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Protein structure</subject><subject>Protein Structure, Secondary</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Rats</subject><subject>Recombinant Proteins - chemistry</subject><subject>Regulation</subject><subject>Rigidity</subject><subject>Secondary structure</subject><subject>Simulation</subject><subject>Static Electricity</subject><subject>Switching</subject><subject>Troponin</subject><subject>Troponin C</subject><subject>Troponin C - metabolism</subject><subject>Troponin I</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk8Fu1DAQhiMEoqXwBggsISE47BLHdmxfkKqqhUpFlUrhak1sZ9erbLzYDrRvj7ebVhvUA8oh1uSbfzK_Z4riNS7nmHD8aeWH0EM33_jezstScEzYk-IQS1LN6qokT_fOB8WLGFdlyYio6-fFQUUZE6Rmh8Xqm--sHjoIyNz2sHY6oujWOZCc7yPyLUpLizQE40CjFHyu53qk_XrT2Ru0saH1YW0N-uPSEp1dnV4j42KCXtuIIKJgYwrg-hRfFs9a6KJ9Nb6Pih9np9cnX2cXl1_OT44vZrqWVZo1IBqCBReYGF61xFjOteFAhAFNJROMWwYUWCU5b4y0jRatJhKA504pkKPi7U530_moRpuiwlRKUdWUskyc7wjjYaU2wa0h3CoPTt0FfFgoCMnpzipd1jXUsmGMNhR0PgCTNWs0WCspNlnr81htaLIN2va53W4iOv3Su6Va-N-KyErgkmaBD6NA8L-G7JZau6ht10Fv_ZD_m5Xb-8Y1z-i7f9DHuxupBeQGXN_6XFdvRdUx5UKUWLIqU_NHqPwYm4cgz1TrcnyS8HGSkJlkb9IChhjV-fer_2cvf07Z93vs0kKXltF3w938TUG6A3XwMQbbPpiMS7W16N4NtV0JNa5ETnuzf0EPSfc7QP4CdjAISQ</recordid><startdate>20140218</startdate><enddate>20140218</enddate><creator>Jayasundar, Jayant James</creator><creator>Xing, Jun</creator><creator>Robinson, John M</creator><creator>Cheung, Herbert C</creator><creator>Dong, Wen-Ji</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140218</creationdate><title>Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints</title><author>Jayasundar, Jayant James ; Xing, Jun ; Robinson, John M ; Cheung, Herbert C ; Dong, Wen-Ji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-ba8b3187813d72f3de77cd7a38dac495857e5a4a52977bd9ebc8fc39aa72034a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actin</topic><topic>Actins - metabolism</topic><topic>Analysis</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Bioengineering</topic><topic>Biology</topic><topic>Calcium - metabolism</topic><topic>Calcium signalling</topic><topic>Calcium-binding protein</topic><topic>Cardiac muscle</topic><topic>Chemical engineering</topic><topic>Conformation</topic><topic>Constraints</topic><topic>Energy transfer</topic><topic>Fluorescence resonance energy transfer</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Heart diseases</topic><topic>Hydrogen Bonding</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Kinases</topic><topic>Ligands</topic><topic>Medicine</topic><topic>Mice</topic><topic>Models, Statistical</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular machines</topic><topic>Muscle contraction</topic><topic>Muscles</topic><topic>Myocardium - metabolism</topic><topic>Neurosciences</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Protein structure</topic><topic>Protein Structure, Secondary</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Rats</topic><topic>Recombinant Proteins - chemistry</topic><topic>Regulation</topic><topic>Rigidity</topic><topic>Secondary structure</topic><topic>Simulation</topic><topic>Static Electricity</topic><topic>Switching</topic><topic>Troponin</topic><topic>Troponin C</topic><topic>Troponin C - metabolism</topic><topic>Troponin I</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jayasundar, Jayant James</creatorcontrib><creatorcontrib>Xing, Jun</creatorcontrib><creatorcontrib>Robinson, John M</creatorcontrib><creatorcontrib>Cheung, Herbert C</creatorcontrib><creatorcontrib>Dong, Wen-Ji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jayasundar, Jayant James</au><au>Xing, Jun</au><au>Robinson, John M</au><au>Cheung, Herbert C</au><au>Dong, Wen-Ji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-18</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e87135</spage><epage>e87135</epage><pages>e87135-e87135</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Cardiac troponin (cTn) is the Ca(2+)-sensitive molecular switch that controls cardiac muscle activation and relaxation. However, the molecular detail of the switching mechanism and how the Ca(2+) signal received at cardiac troponin C (cTnC) is communicated to cardiac troponin I (cTnI) are still elusive. To unravel the structural details of troponin switching, we performed ensemble Förster resonance energy transfer (FRET) measurements and molecular dynamic (MD) simulations of the cardiac troponin core domain complex. The distance distributions of forty five inter-residue pairs were obtained under Ca(2+)-free and saturating Ca(2+) conditions from time-resolved FRET measurements. These distances were incorporated as restraints during the MD simulations of the cardiac troponin core domain. Compared to the Ca(2+)-saturated structure, the absence of regulatory Ca(2+) perturbed the cTnC N-domain hydrophobic pocket which assumed a closed conformation. This event partially unfolded the cTnI regulatory region/switch. The absence of Ca(2+), induced flexibility to the D/E linker and the cTnI inhibitory region, and rotated the cTnC N-domain with respect to rest of the troponin core domain. In the presence of saturating Ca(2+) the above said phenomenon were absent. We postulate that the secondary structure perturbations experienced by the cTnI regulatory region held within the cTnC N-domain hydrophobic pocket, coupled with the rotation of the cTnC N-domain would control the cTnI mobile domain interaction with actin. Concomitantly the rotation of the cTnC N-domain and perturbation of the D/E linker rigidity would control the cTnI inhibitory region interaction with actin to effect muscle relaxation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24558365</pmid><doi>10.1371/journal.pone.0087135</doi><tpages>e87135</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-02, Vol.9 (2), p.e87135-e87135
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1499826445
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Actin
Actins - metabolism
Analysis
Animals
Biochemistry
Bioengineering
Biology
Calcium - metabolism
Calcium signalling
Calcium-binding protein
Cardiac muscle
Chemical engineering
Conformation
Constraints
Energy transfer
Fluorescence resonance energy transfer
Fluorescence Resonance Energy Transfer - methods
Heart diseases
Hydrogen Bonding
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Kinases
Ligands
Medicine
Mice
Models, Statistical
Molecular dynamics
Molecular Dynamics Simulation
Molecular machines
Muscle contraction
Muscles
Myocardium - metabolism
Neurosciences
Phosphorylation
Physiology
Protein Binding
Protein structure
Protein Structure, Secondary
Protein Structure, Tertiary
Proteins
Rats
Recombinant Proteins - chemistry
Regulation
Rigidity
Secondary structure
Simulation
Static Electricity
Switching
Troponin
Troponin C
Troponin C - metabolism
Troponin I
title Molecular dynamics simulations of the cardiac troponin complex performed with FRET distances as restraints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T11%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulations%20of%20the%20cardiac%20troponin%20complex%20performed%20with%20FRET%20distances%20as%20restraints&rft.jtitle=PloS%20one&rft.au=Jayasundar,%20Jayant%20James&rft.date=2014-02-18&rft.volume=9&rft.issue=2&rft.spage=e87135&rft.epage=e87135&rft.pages=e87135-e87135&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0087135&rft_dat=%3Cgale_plos_%3EA478801952%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499826445&rft_id=info:pmid/24558365&rft_galeid=A478801952&rft_doaj_id=oai_doaj_org_article_c066a69b554b4ac9b5a5965bcaee941d&rfr_iscdi=true