Machine learning estimates of natural product conformational energies

Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2014-01, Vol.10 (1), p.e1003400-e1003400
Hauptverfasser: Rupp, Matthias, Bauer, Matthias R, Wilcken, Rainer, Lange, Andreas, Reutlinger, Michael, Boeckler, Frank M, Schneider, Gisbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003400
container_issue 1
container_start_page e1003400
container_title PLoS computational biology
container_volume 10
creator Rupp, Matthias
Bauer, Matthias R
Wilcken, Rainer
Lange, Andreas
Reutlinger, Michael
Boeckler, Frank M
Schneider, Gisbert
description Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures.
doi_str_mv 10.1371/journal.pcbi.1003400
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1498394287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A361551934</galeid><doaj_id>oai_doaj_org_article_4ba74ec90e154de490c1802d33cbfe86</doaj_id><sourcerecordid>A361551934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-8f66761681a0a3d8cb30f7faf6d89a97126455109e543015e019b382690d30733</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxDkCIdd7Pgj9gWpqgqsVEDi42w5zjj1KmsvdoLg3zPtplX3iHyw5Xnm9czrqaqXlKwpa-m7bZpztON677qwpoQwTsij6pQKwVYtE-rxg_NJ9ayULTJCafm0Omk4F0yL5rS6_GzddYhQj2BzDHGooUxhZycodfJ1tNOc7Vjvc-pnN9UuRZ8yhkPCt2uIkIcA5Xn1xNuxwItlP6t-frj8cfFpdfX14-bi_GrlJBHTSnkpW0mlopZY1ivXMeJbb73slba6pY3kQlCiQXBGqABCdcdUIzXpGWkZO6teH3T3YypmcaAYyrVimjeqRWJzIPpkt2afsZX81yQbzO1FyoOxeQpuBMM723JwmgAVvAeuiaOKND1jrvOgJGq9X16bux30DuKEXhyJHkdiuDZD-m2Y0pwKigJvFoGcfs1orNmF4mAcbYQ039aNvTEhG0TXB3SwWFpAl1HR4ephF9B18AHvz5nEP6WacUx4e5SAzAR_psHOpZjN92__wX45ZvmBdTmVksHf90uJuRm8O9vNzeCZZfAw7dVDr-6T7iaN_QMt09Qv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492693562</pqid></control><display><type>article</type><title>Machine learning estimates of natural product conformational energies</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>NCBI_PubMed Central(免费)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Rupp, Matthias ; Bauer, Matthias R ; Wilcken, Rainer ; Lange, Andreas ; Reutlinger, Michael ; Boeckler, Frank M ; Schneider, Gisbert</creator><creatorcontrib>Rupp, Matthias ; Bauer, Matthias R ; Wilcken, Rainer ; Lange, Andreas ; Reutlinger, Michael ; Boeckler, Frank M ; Schneider, Gisbert</creatorcontrib><description>Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003400</identifier><identifier>PMID: 24453952</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Adenosine Triphosphatases - chemistry ; Algorithms ; Artificial Intelligence ; Biological research ; Biology, Experimental ; Chemistry ; Chemistry, Pharmaceutical ; Computational biology ; Computational Biology - methods ; Computer Science ; Enzyme Inhibitors - chemistry ; Estimates ; Machine learning ; Macrolides - chemistry ; Magnetic Resonance Spectroscopy ; Models, Chemical ; Molecular Dynamics Simulation ; Molecular Structure ; Molecular weight ; Myxococcales - metabolism ; Normal Distribution ; Principal Component Analysis ; Protein Conformation ; Software ; Standard deviation ; Standardization ; Stochastic Processes ; Thiazoles - chemistry</subject><ispartof>PLoS computational biology, 2014-01, Vol.10 (1), p.e1003400-e1003400</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Rupp et al</rights><rights>2014 Rupp et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Rupp M, Bauer MR, Wilcken R, Lange A, Reutlinger M, et al. (2014) Machine Learning Estimates of Natural Product Conformational Energies. PLoS Comput Biol 10(1): e1003400. doi:10.1371/journal.pcbi.1003400</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-8f66761681a0a3d8cb30f7faf6d89a97126455109e543015e019b382690d30733</citedby><cites>FETCH-LOGICAL-c605t-8f66761681a0a3d8cb30f7faf6d89a97126455109e543015e019b382690d30733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894151/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894151/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24453952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rupp, Matthias</creatorcontrib><creatorcontrib>Bauer, Matthias R</creatorcontrib><creatorcontrib>Wilcken, Rainer</creatorcontrib><creatorcontrib>Lange, Andreas</creatorcontrib><creatorcontrib>Reutlinger, Michael</creatorcontrib><creatorcontrib>Boeckler, Frank M</creatorcontrib><creatorcontrib>Schneider, Gisbert</creatorcontrib><title>Machine learning estimates of natural product conformational energies</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures.</description><subject>Accuracy</subject><subject>Adenosine Triphosphatases - chemistry</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biological research</subject><subject>Biology, Experimental</subject><subject>Chemistry</subject><subject>Chemistry, Pharmaceutical</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Computer Science</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Estimates</subject><subject>Machine learning</subject><subject>Macrolides - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Structure</subject><subject>Molecular weight</subject><subject>Myxococcales - metabolism</subject><subject>Normal Distribution</subject><subject>Principal Component Analysis</subject><subject>Protein Conformation</subject><subject>Software</subject><subject>Standard deviation</subject><subject>Standardization</subject><subject>Stochastic Processes</subject><subject>Thiazoles - chemistry</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxDkCIdd7Pgj9gWpqgqsVEDi42w5zjj1KmsvdoLg3zPtplX3iHyw5Xnm9czrqaqXlKwpa-m7bZpztON677qwpoQwTsij6pQKwVYtE-rxg_NJ9ayULTJCafm0Omk4F0yL5rS6_GzddYhQj2BzDHGooUxhZycodfJ1tNOc7Vjvc-pnN9UuRZ8yhkPCt2uIkIcA5Xn1xNuxwItlP6t-frj8cfFpdfX14-bi_GrlJBHTSnkpW0mlopZY1ivXMeJbb73slba6pY3kQlCiQXBGqABCdcdUIzXpGWkZO6teH3T3YypmcaAYyrVimjeqRWJzIPpkt2afsZX81yQbzO1FyoOxeQpuBMM723JwmgAVvAeuiaOKND1jrvOgJGq9X16bux30DuKEXhyJHkdiuDZD-m2Y0pwKigJvFoGcfs1orNmF4mAcbYQ039aNvTEhG0TXB3SwWFpAl1HR4ephF9B18AHvz5nEP6WacUx4e5SAzAR_psHOpZjN92__wX45ZvmBdTmVksHf90uJuRm8O9vNzeCZZfAw7dVDr-6T7iaN_QMt09Qv</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Rupp, Matthias</creator><creator>Bauer, Matthias R</creator><creator>Wilcken, Rainer</creator><creator>Lange, Andreas</creator><creator>Reutlinger, Michael</creator><creator>Boeckler, Frank M</creator><creator>Schneider, Gisbert</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Machine learning estimates of natural product conformational energies</title><author>Rupp, Matthias ; Bauer, Matthias R ; Wilcken, Rainer ; Lange, Andreas ; Reutlinger, Michael ; Boeckler, Frank M ; Schneider, Gisbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-8f66761681a0a3d8cb30f7faf6d89a97126455109e543015e019b382690d30733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Adenosine Triphosphatases - chemistry</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biological research</topic><topic>Biology, Experimental</topic><topic>Chemistry</topic><topic>Chemistry, Pharmaceutical</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Computer Science</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Estimates</topic><topic>Machine learning</topic><topic>Macrolides - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Structure</topic><topic>Molecular weight</topic><topic>Myxococcales - metabolism</topic><topic>Normal Distribution</topic><topic>Principal Component Analysis</topic><topic>Protein Conformation</topic><topic>Software</topic><topic>Standard deviation</topic><topic>Standardization</topic><topic>Stochastic Processes</topic><topic>Thiazoles - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rupp, Matthias</creatorcontrib><creatorcontrib>Bauer, Matthias R</creatorcontrib><creatorcontrib>Wilcken, Rainer</creatorcontrib><creatorcontrib>Lange, Andreas</creatorcontrib><creatorcontrib>Reutlinger, Michael</creatorcontrib><creatorcontrib>Boeckler, Frank M</creatorcontrib><creatorcontrib>Schneider, Gisbert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rupp, Matthias</au><au>Bauer, Matthias R</au><au>Wilcken, Rainer</au><au>Lange, Andreas</au><au>Reutlinger, Michael</au><au>Boeckler, Frank M</au><au>Schneider, Gisbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning estimates of natural product conformational energies</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>1</issue><spage>e1003400</spage><epage>e1003400</epage><pages>e1003400-e1003400</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24453952</pmid><doi>10.1371/journal.pcbi.1003400</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2014-01, Vol.10 (1), p.e1003400-e1003400
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1498394287
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; NCBI_PubMed Central(免费); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library
subjects Accuracy
Adenosine Triphosphatases - chemistry
Algorithms
Artificial Intelligence
Biological research
Biology, Experimental
Chemistry
Chemistry, Pharmaceutical
Computational biology
Computational Biology - methods
Computer Science
Enzyme Inhibitors - chemistry
Estimates
Machine learning
Macrolides - chemistry
Magnetic Resonance Spectroscopy
Models, Chemical
Molecular Dynamics Simulation
Molecular Structure
Molecular weight
Myxococcales - metabolism
Normal Distribution
Principal Component Analysis
Protein Conformation
Software
Standard deviation
Standardization
Stochastic Processes
Thiazoles - chemistry
title Machine learning estimates of natural product conformational energies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20estimates%20of%20natural%20product%20conformational%20energies&rft.jtitle=PLoS%20computational%20biology&rft.au=Rupp,%20Matthias&rft.date=2014-01-01&rft.volume=10&rft.issue=1&rft.spage=e1003400&rft.epage=e1003400&rft.pages=e1003400-e1003400&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003400&rft_dat=%3Cgale_plos_%3EA361551934%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492693562&rft_id=info:pmid/24453952&rft_galeid=A361551934&rft_doaj_id=oai_doaj_org_article_4ba74ec90e154de490c1802d33cbfe86&rfr_iscdi=true