Machine learning estimates of natural product conformational energies
Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2014-01, Vol.10 (1), p.e1003400-e1003400 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003400 |
---|---|
container_issue | 1 |
container_start_page | e1003400 |
container_title | PLoS computational biology |
container_volume | 10 |
creator | Rupp, Matthias Bauer, Matthias R Wilcken, Rainer Lange, Andreas Reutlinger, Michael Boeckler, Frank M Schneider, Gisbert |
description | Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures. |
doi_str_mv | 10.1371/journal.pcbi.1003400 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1498394287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A361551934</galeid><doaj_id>oai_doaj_org_article_4ba74ec90e154de490c1802d33cbfe86</doaj_id><sourcerecordid>A361551934</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-8f66761681a0a3d8cb30f7faf6d89a97126455109e543015e019b382690d30733</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxDkCIdd7Pgj9gWpqgqsVEDi42w5zjj1KmsvdoLg3zPtplX3iHyw5Xnm9czrqaqXlKwpa-m7bZpztON677qwpoQwTsij6pQKwVYtE-rxg_NJ9ayULTJCafm0Omk4F0yL5rS6_GzddYhQj2BzDHGooUxhZycodfJ1tNOc7Vjvc-pnN9UuRZ8yhkPCt2uIkIcA5Xn1xNuxwItlP6t-frj8cfFpdfX14-bi_GrlJBHTSnkpW0mlopZY1ivXMeJbb73slba6pY3kQlCiQXBGqABCdcdUIzXpGWkZO6teH3T3YypmcaAYyrVimjeqRWJzIPpkt2afsZX81yQbzO1FyoOxeQpuBMM723JwmgAVvAeuiaOKND1jrvOgJGq9X16bux30DuKEXhyJHkdiuDZD-m2Y0pwKigJvFoGcfs1orNmF4mAcbYQ039aNvTEhG0TXB3SwWFpAl1HR4ephF9B18AHvz5nEP6WacUx4e5SAzAR_psHOpZjN92__wX45ZvmBdTmVksHf90uJuRm8O9vNzeCZZfAw7dVDr-6T7iaN_QMt09Qv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492693562</pqid></control><display><type>article</type><title>Machine learning estimates of natural product conformational energies</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>NCBI_PubMed Central(免费)</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Rupp, Matthias ; Bauer, Matthias R ; Wilcken, Rainer ; Lange, Andreas ; Reutlinger, Michael ; Boeckler, Frank M ; Schneider, Gisbert</creator><creatorcontrib>Rupp, Matthias ; Bauer, Matthias R ; Wilcken, Rainer ; Lange, Andreas ; Reutlinger, Michael ; Boeckler, Frank M ; Schneider, Gisbert</creatorcontrib><description>Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003400</identifier><identifier>PMID: 24453952</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Accuracy ; Adenosine Triphosphatases - chemistry ; Algorithms ; Artificial Intelligence ; Biological research ; Biology, Experimental ; Chemistry ; Chemistry, Pharmaceutical ; Computational biology ; Computational Biology - methods ; Computer Science ; Enzyme Inhibitors - chemistry ; Estimates ; Machine learning ; Macrolides - chemistry ; Magnetic Resonance Spectroscopy ; Models, Chemical ; Molecular Dynamics Simulation ; Molecular Structure ; Molecular weight ; Myxococcales - metabolism ; Normal Distribution ; Principal Component Analysis ; Protein Conformation ; Software ; Standard deviation ; Standardization ; Stochastic Processes ; Thiazoles - chemistry</subject><ispartof>PLoS computational biology, 2014-01, Vol.10 (1), p.e1003400-e1003400</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Rupp et al</rights><rights>2014 Rupp et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Rupp M, Bauer MR, Wilcken R, Lange A, Reutlinger M, et al. (2014) Machine Learning Estimates of Natural Product Conformational Energies. PLoS Comput Biol 10(1): e1003400. doi:10.1371/journal.pcbi.1003400</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-8f66761681a0a3d8cb30f7faf6d89a97126455109e543015e019b382690d30733</citedby><cites>FETCH-LOGICAL-c605t-8f66761681a0a3d8cb30f7faf6d89a97126455109e543015e019b382690d30733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894151/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894151/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24453952$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rupp, Matthias</creatorcontrib><creatorcontrib>Bauer, Matthias R</creatorcontrib><creatorcontrib>Wilcken, Rainer</creatorcontrib><creatorcontrib>Lange, Andreas</creatorcontrib><creatorcontrib>Reutlinger, Michael</creatorcontrib><creatorcontrib>Boeckler, Frank M</creatorcontrib><creatorcontrib>Schneider, Gisbert</creatorcontrib><title>Machine learning estimates of natural product conformational energies</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures.</description><subject>Accuracy</subject><subject>Adenosine Triphosphatases - chemistry</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biological research</subject><subject>Biology, Experimental</subject><subject>Chemistry</subject><subject>Chemistry, Pharmaceutical</subject><subject>Computational biology</subject><subject>Computational Biology - methods</subject><subject>Computer Science</subject><subject>Enzyme Inhibitors - chemistry</subject><subject>Estimates</subject><subject>Machine learning</subject><subject>Macrolides - chemistry</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Models, Chemical</subject><subject>Molecular Dynamics Simulation</subject><subject>Molecular Structure</subject><subject>Molecular weight</subject><subject>Myxococcales - metabolism</subject><subject>Normal Distribution</subject><subject>Principal Component Analysis</subject><subject>Protein Conformation</subject><subject>Software</subject><subject>Standard deviation</subject><subject>Standardization</subject><subject>Stochastic Processes</subject><subject>Thiazoles - chemistry</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxDkCIdd7Pgj9gWpqgqsVEDi42w5zjj1KmsvdoLg3zPtplX3iHyw5Xnm9czrqaqXlKwpa-m7bZpztON677qwpoQwTsij6pQKwVYtE-rxg_NJ9ayULTJCafm0Omk4F0yL5rS6_GzddYhQj2BzDHGooUxhZycodfJ1tNOc7Vjvc-pnN9UuRZ8yhkPCt2uIkIcA5Xn1xNuxwItlP6t-frj8cfFpdfX14-bi_GrlJBHTSnkpW0mlopZY1ivXMeJbb73slba6pY3kQlCiQXBGqABCdcdUIzXpGWkZO6teH3T3YypmcaAYyrVimjeqRWJzIPpkt2afsZX81yQbzO1FyoOxeQpuBMM723JwmgAVvAeuiaOKND1jrvOgJGq9X16bux30DuKEXhyJHkdiuDZD-m2Y0pwKigJvFoGcfs1orNmF4mAcbYQ039aNvTEhG0TXB3SwWFpAl1HR4ephF9B18AHvz5nEP6WacUx4e5SAzAR_psHOpZjN92__wX45ZvmBdTmVksHf90uJuRm8O9vNzeCZZfAw7dVDr-6T7iaN_QMt09Qv</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Rupp, Matthias</creator><creator>Bauer, Matthias R</creator><creator>Wilcken, Rainer</creator><creator>Lange, Andreas</creator><creator>Reutlinger, Michael</creator><creator>Boeckler, Frank M</creator><creator>Schneider, Gisbert</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Machine learning estimates of natural product conformational energies</title><author>Rupp, Matthias ; Bauer, Matthias R ; Wilcken, Rainer ; Lange, Andreas ; Reutlinger, Michael ; Boeckler, Frank M ; Schneider, Gisbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-8f66761681a0a3d8cb30f7faf6d89a97126455109e543015e019b382690d30733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accuracy</topic><topic>Adenosine Triphosphatases - chemistry</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biological research</topic><topic>Biology, Experimental</topic><topic>Chemistry</topic><topic>Chemistry, Pharmaceutical</topic><topic>Computational biology</topic><topic>Computational Biology - methods</topic><topic>Computer Science</topic><topic>Enzyme Inhibitors - chemistry</topic><topic>Estimates</topic><topic>Machine learning</topic><topic>Macrolides - chemistry</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Models, Chemical</topic><topic>Molecular Dynamics Simulation</topic><topic>Molecular Structure</topic><topic>Molecular weight</topic><topic>Myxococcales - metabolism</topic><topic>Normal Distribution</topic><topic>Principal Component Analysis</topic><topic>Protein Conformation</topic><topic>Software</topic><topic>Standard deviation</topic><topic>Standardization</topic><topic>Stochastic Processes</topic><topic>Thiazoles - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rupp, Matthias</creatorcontrib><creatorcontrib>Bauer, Matthias R</creatorcontrib><creatorcontrib>Wilcken, Rainer</creatorcontrib><creatorcontrib>Lange, Andreas</creatorcontrib><creatorcontrib>Reutlinger, Michael</creatorcontrib><creatorcontrib>Boeckler, Frank M</creatorcontrib><creatorcontrib>Schneider, Gisbert</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rupp, Matthias</au><au>Bauer, Matthias R</au><au>Wilcken, Rainer</au><au>Lange, Andreas</au><au>Reutlinger, Michael</au><au>Boeckler, Frank M</au><au>Schneider, Gisbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning estimates of natural product conformational energies</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>1</issue><spage>e1003400</spage><epage>e1003400</epage><pages>e1003400-e1003400</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra as an example. Our model estimates energies of new conformations by exploiting information from previous calculations via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region, allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations of larger molecular structures.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24453952</pmid><doi>10.1371/journal.pcbi.1003400</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2014-01, Vol.10 (1), p.e1003400-e1003400 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1498394287 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; NCBI_PubMed Central(免费); DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Accuracy Adenosine Triphosphatases - chemistry Algorithms Artificial Intelligence Biological research Biology, Experimental Chemistry Chemistry, Pharmaceutical Computational biology Computational Biology - methods Computer Science Enzyme Inhibitors - chemistry Estimates Machine learning Macrolides - chemistry Magnetic Resonance Spectroscopy Models, Chemical Molecular Dynamics Simulation Molecular Structure Molecular weight Myxococcales - metabolism Normal Distribution Principal Component Analysis Protein Conformation Software Standard deviation Standardization Stochastic Processes Thiazoles - chemistry |
title | Machine learning estimates of natural product conformational energies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A44%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20estimates%20of%20natural%20product%20conformational%20energies&rft.jtitle=PLoS%20computational%20biology&rft.au=Rupp,%20Matthias&rft.date=2014-01-01&rft.volume=10&rft.issue=1&rft.spage=e1003400&rft.epage=e1003400&rft.pages=e1003400-e1003400&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003400&rft_dat=%3Cgale_plos_%3EA361551934%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492693562&rft_id=info:pmid/24453952&rft_galeid=A361551934&rft_doaj_id=oai_doaj_org_article_4ba74ec90e154de490c1802d33cbfe86&rfr_iscdi=true |