VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data

This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2014-01, Vol.10 (1), p.e1003441
Hauptverfasser: Daunizeau, Jean, Adam, Vincent, Rigoux, Lionel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e1003441
container_title PLoS computational biology
container_volume 10
creator Daunizeau, Jean
Adam, Vincent
Rigoux, Lionel
description This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization.
doi_str_mv 10.1371/journal.pcbi.1003441
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1498393995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A361551968</galeid><doaj_id>oai_doaj_org_article_b575621fe94e4f40aa26b073218dd365</doaj_id><sourcerecordid>A361551968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-c729204de539464614b3ef2fbd9489de1a925d9d61a0da5591498c788dffdc6a3</originalsourceid><addsrcrecordid>eNqVkklv1DAUxyMEoqXwDRDkCIcZ4nhJzKHSULGMVIHEduFgvXhJPXLswU4q-PY4nbTqHJEPtp9_7--3FcVzVK0RbtCbXZiiB7fey86uUVVhQtCD4hRRilcNpu3De-eT4klKu8zQlrPHxUlNCKOIt6fFr5_vNm9LKPcxdNBZZ9NoZTlGDeOg_VgGU_rgnfUaYjkEpV0qTYil11P2sMGF3kpwJXhVdvoKrm0OK98VjPC0eGTAJf1s2c-KHx_ef7_4tLr88nF7sblcSVbRcSWbmtcVUZpiThhhiHRYm9p0ipOWK42A11RxxRBUCijliPBWNm2rjFGSAT4rXh509y4ksdQliRnDHHNOM7E9ECrATuyjHSD-FQGsuDGE2AuIOXGnRUcbympkNCeaGFIB1KyrGlyjVinMZq3z5bepG7SSuUo54SPR4xdvr0QfrgXmuQFNmwVeLQIx_J50GsVgk9TOgddhuom7Zm1DcJ3R9QHtIYdmvQlZUeal9GBl8NrYbN9gljuNOJu1Xx85ZGbUf8YeppTE9tvX_2A_H7PkwMoYUora3OWLKjGP423ZxTyOYhnH7Pbifq3unG7nD_8DPKfc3A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492687432</pqid></control><display><type>article</type><title>VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Daunizeau, Jean ; Adam, Vincent ; Rigoux, Lionel</creator><contributor>Prlic, Andreas</contributor><creatorcontrib>Daunizeau, Jean ; Adam, Vincent ; Rigoux, Lionel ; Prlic, Andreas</creatorcontrib><description>This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003441</identifier><identifier>PMID: 24465198</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Bayes Theorem ; Biology ; Cognition ; Computational Biology ; Computer Simulation ; Data analysis ; Decision Making ; Design optimization ; Humans ; Mathematics ; Medical imaging ; Models, Biological ; Models, Neurological ; Nerve Net ; Neural circuitry ; Neural networks ; Neurological research ; Neurosciences ; Normal Distribution ; Probability ; Social and Behavioral Sciences ; Software ; Stochastic Processes ; Time series</subject><ispartof>PLoS computational biology, 2014-01, Vol.10 (1), p.e1003441</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Daunizeau et al</rights><rights>2014 Daunizeau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Daunizeau J, Adam V, Rigoux L (2014) VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data. PLoS Comput Biol 10(1): e1003441. doi:10.1371/journal.pcbi.1003441</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-c729204de539464614b3ef2fbd9489de1a925d9d61a0da5591498c788dffdc6a3</citedby><cites>FETCH-LOGICAL-c605t-c729204de539464614b3ef2fbd9489de1a925d9d61a0da5591498c788dffdc6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900378/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900378/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24465198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Prlic, Andreas</contributor><creatorcontrib>Daunizeau, Jean</creatorcontrib><creatorcontrib>Adam, Vincent</creatorcontrib><creatorcontrib>Rigoux, Lionel</creatorcontrib><title>VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Biology</subject><subject>Cognition</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Decision Making</subject><subject>Design optimization</subject><subject>Humans</subject><subject>Mathematics</subject><subject>Medical imaging</subject><subject>Models, Biological</subject><subject>Models, Neurological</subject><subject>Nerve Net</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurological research</subject><subject>Neurosciences</subject><subject>Normal Distribution</subject><subject>Probability</subject><subject>Social and Behavioral Sciences</subject><subject>Software</subject><subject>Stochastic Processes</subject><subject>Time series</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkklv1DAUxyMEoqXwDRDkCIcZ4nhJzKHSULGMVIHEduFgvXhJPXLswU4q-PY4nbTqHJEPtp9_7--3FcVzVK0RbtCbXZiiB7fey86uUVVhQtCD4hRRilcNpu3De-eT4klKu8zQlrPHxUlNCKOIt6fFr5_vNm9LKPcxdNBZZ9NoZTlGDeOg_VgGU_rgnfUaYjkEpV0qTYil11P2sMGF3kpwJXhVdvoKrm0OK98VjPC0eGTAJf1s2c-KHx_ef7_4tLr88nF7sblcSVbRcSWbmtcVUZpiThhhiHRYm9p0ipOWK42A11RxxRBUCijliPBWNm2rjFGSAT4rXh509y4ksdQliRnDHHNOM7E9ECrATuyjHSD-FQGsuDGE2AuIOXGnRUcbympkNCeaGFIB1KyrGlyjVinMZq3z5bepG7SSuUo54SPR4xdvr0QfrgXmuQFNmwVeLQIx_J50GsVgk9TOgddhuom7Zm1DcJ3R9QHtIYdmvQlZUeal9GBl8NrYbN9gljuNOJu1Xx85ZGbUf8YeppTE9tvX_2A_H7PkwMoYUora3OWLKjGP423ZxTyOYhnH7Pbifq3unG7nD_8DPKfc3A</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Daunizeau, Jean</creator><creator>Adam, Vincent</creator><creator>Rigoux, Lionel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data</title><author>Daunizeau, Jean ; Adam, Vincent ; Rigoux, Lionel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-c729204de539464614b3ef2fbd9489de1a925d9d61a0da5591498c788dffdc6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Biology</topic><topic>Cognition</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Decision Making</topic><topic>Design optimization</topic><topic>Humans</topic><topic>Mathematics</topic><topic>Medical imaging</topic><topic>Models, Biological</topic><topic>Models, Neurological</topic><topic>Nerve Net</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurological research</topic><topic>Neurosciences</topic><topic>Normal Distribution</topic><topic>Probability</topic><topic>Social and Behavioral Sciences</topic><topic>Software</topic><topic>Stochastic Processes</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daunizeau, Jean</creatorcontrib><creatorcontrib>Adam, Vincent</creatorcontrib><creatorcontrib>Rigoux, Lionel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daunizeau, Jean</au><au>Adam, Vincent</au><au>Rigoux, Lionel</au><au>Prlic, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>1</issue><spage>e1003441</spage><pages>e1003441-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24465198</pmid><doi>10.1371/journal.pcbi.1003441</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2014-01, Vol.10 (1), p.e1003441
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1498393995
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central
subjects Algorithms
Bayes Theorem
Biology
Cognition
Computational Biology
Computer Simulation
Data analysis
Decision Making
Design optimization
Humans
Mathematics
Medical imaging
Models, Biological
Models, Neurological
Nerve Net
Neural circuitry
Neural networks
Neurological research
Neurosciences
Normal Distribution
Probability
Social and Behavioral Sciences
Software
Stochastic Processes
Time series
title VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VBA:%20a%20probabilistic%20treatment%20of%20nonlinear%20models%20for%20neurobiological%20and%20behavioural%20data&rft.jtitle=PLoS%20computational%20biology&rft.au=Daunizeau,%20Jean&rft.date=2014-01-01&rft.volume=10&rft.issue=1&rft.spage=e1003441&rft.pages=e1003441-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003441&rft_dat=%3Cgale_plos_%3EA361551968%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492687432&rft_id=info:pmid/24465198&rft_galeid=A361551968&rft_doaj_id=oai_doaj_org_article_b575621fe94e4f40aa26b073218dd365&rfr_iscdi=true