VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data
This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspec...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2014-01, Vol.10 (1), p.e1003441 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e1003441 |
container_title | PLoS computational biology |
container_volume | 10 |
creator | Daunizeau, Jean Adam, Vincent Rigoux, Lionel |
description | This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization. |
doi_str_mv | 10.1371/journal.pcbi.1003441 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1498393995</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A361551968</galeid><doaj_id>oai_doaj_org_article_b575621fe94e4f40aa26b073218dd365</doaj_id><sourcerecordid>A361551968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-c729204de539464614b3ef2fbd9489de1a925d9d61a0da5591498c788dffdc6a3</originalsourceid><addsrcrecordid>eNqVkklv1DAUxyMEoqXwDRDkCIcZ4nhJzKHSULGMVIHEduFgvXhJPXLswU4q-PY4nbTqHJEPtp9_7--3FcVzVK0RbtCbXZiiB7fey86uUVVhQtCD4hRRilcNpu3De-eT4klKu8zQlrPHxUlNCKOIt6fFr5_vNm9LKPcxdNBZZ9NoZTlGDeOg_VgGU_rgnfUaYjkEpV0qTYil11P2sMGF3kpwJXhVdvoKrm0OK98VjPC0eGTAJf1s2c-KHx_ef7_4tLr88nF7sblcSVbRcSWbmtcVUZpiThhhiHRYm9p0ipOWK42A11RxxRBUCijliPBWNm2rjFGSAT4rXh509y4ksdQliRnDHHNOM7E9ECrATuyjHSD-FQGsuDGE2AuIOXGnRUcbympkNCeaGFIB1KyrGlyjVinMZq3z5bepG7SSuUo54SPR4xdvr0QfrgXmuQFNmwVeLQIx_J50GsVgk9TOgddhuom7Zm1DcJ3R9QHtIYdmvQlZUeal9GBl8NrYbN9gljuNOJu1Xx85ZGbUf8YeppTE9tvX_2A_H7PkwMoYUora3OWLKjGP423ZxTyOYhnH7Pbifq3unG7nD_8DPKfc3A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492687432</pqid></control><display><type>article</type><title>VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><creator>Daunizeau, Jean ; Adam, Vincent ; Rigoux, Lionel</creator><contributor>Prlic, Andreas</contributor><creatorcontrib>Daunizeau, Jean ; Adam, Vincent ; Rigoux, Lionel ; Prlic, Andreas</creatorcontrib><description>This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003441</identifier><identifier>PMID: 24465198</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Bayes Theorem ; Biology ; Cognition ; Computational Biology ; Computer Simulation ; Data analysis ; Decision Making ; Design optimization ; Humans ; Mathematics ; Medical imaging ; Models, Biological ; Models, Neurological ; Nerve Net ; Neural circuitry ; Neural networks ; Neurological research ; Neurosciences ; Normal Distribution ; Probability ; Social and Behavioral Sciences ; Software ; Stochastic Processes ; Time series</subject><ispartof>PLoS computational biology, 2014-01, Vol.10 (1), p.e1003441</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Daunizeau et al</rights><rights>2014 Daunizeau et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Daunizeau J, Adam V, Rigoux L (2014) VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data. PLoS Comput Biol 10(1): e1003441. doi:10.1371/journal.pcbi.1003441</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-c729204de539464614b3ef2fbd9489de1a925d9d61a0da5591498c788dffdc6a3</citedby><cites>FETCH-LOGICAL-c605t-c729204de539464614b3ef2fbd9489de1a925d9d61a0da5591498c788dffdc6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900378/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900378/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23871,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24465198$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Prlic, Andreas</contributor><creatorcontrib>Daunizeau, Jean</creatorcontrib><creatorcontrib>Adam, Vincent</creatorcontrib><creatorcontrib>Rigoux, Lionel</creatorcontrib><title>VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization.</description><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Biology</subject><subject>Cognition</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Data analysis</subject><subject>Decision Making</subject><subject>Design optimization</subject><subject>Humans</subject><subject>Mathematics</subject><subject>Medical imaging</subject><subject>Models, Biological</subject><subject>Models, Neurological</subject><subject>Nerve Net</subject><subject>Neural circuitry</subject><subject>Neural networks</subject><subject>Neurological research</subject><subject>Neurosciences</subject><subject>Normal Distribution</subject><subject>Probability</subject><subject>Social and Behavioral Sciences</subject><subject>Software</subject><subject>Stochastic Processes</subject><subject>Time series</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkklv1DAUxyMEoqXwDRDkCIcZ4nhJzKHSULGMVIHEduFgvXhJPXLswU4q-PY4nbTqHJEPtp9_7--3FcVzVK0RbtCbXZiiB7fey86uUVVhQtCD4hRRilcNpu3De-eT4klKu8zQlrPHxUlNCKOIt6fFr5_vNm9LKPcxdNBZZ9NoZTlGDeOg_VgGU_rgnfUaYjkEpV0qTYil11P2sMGF3kpwJXhVdvoKrm0OK98VjPC0eGTAJf1s2c-KHx_ef7_4tLr88nF7sblcSVbRcSWbmtcVUZpiThhhiHRYm9p0ipOWK42A11RxxRBUCijliPBWNm2rjFGSAT4rXh509y4ksdQliRnDHHNOM7E9ECrATuyjHSD-FQGsuDGE2AuIOXGnRUcbympkNCeaGFIB1KyrGlyjVinMZq3z5bepG7SSuUo54SPR4xdvr0QfrgXmuQFNmwVeLQIx_J50GsVgk9TOgddhuom7Zm1DcJ3R9QHtIYdmvQlZUeal9GBl8NrYbN9gljuNOJu1Xx85ZGbUf8YeppTE9tvX_2A_H7PkwMoYUora3OWLKjGP423ZxTyOYhnH7Pbifq3unG7nD_8DPKfc3A</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Daunizeau, Jean</creator><creator>Adam, Vincent</creator><creator>Rigoux, Lionel</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data</title><author>Daunizeau, Jean ; Adam, Vincent ; Rigoux, Lionel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-c729204de539464614b3ef2fbd9489de1a925d9d61a0da5591498c788dffdc6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Biology</topic><topic>Cognition</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Data analysis</topic><topic>Decision Making</topic><topic>Design optimization</topic><topic>Humans</topic><topic>Mathematics</topic><topic>Medical imaging</topic><topic>Models, Biological</topic><topic>Models, Neurological</topic><topic>Nerve Net</topic><topic>Neural circuitry</topic><topic>Neural networks</topic><topic>Neurological research</topic><topic>Neurosciences</topic><topic>Normal Distribution</topic><topic>Probability</topic><topic>Social and Behavioral Sciences</topic><topic>Software</topic><topic>Stochastic Processes</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daunizeau, Jean</creatorcontrib><creatorcontrib>Adam, Vincent</creatorcontrib><creatorcontrib>Rigoux, Lionel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daunizeau, Jean</au><au>Adam, Vincent</au><au>Rigoux, Lionel</au><au>Prlic, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>1</issue><spage>e1003441</spage><pages>e1003441-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24465198</pmid><doi>10.1371/journal.pcbi.1003441</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2014-01, Vol.10 (1), p.e1003441 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1498393995 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central |
subjects | Algorithms Bayes Theorem Biology Cognition Computational Biology Computer Simulation Data analysis Decision Making Design optimization Humans Mathematics Medical imaging Models, Biological Models, Neurological Nerve Net Neural circuitry Neural networks Neurological research Neurosciences Normal Distribution Probability Social and Behavioral Sciences Software Stochastic Processes Time series |
title | VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T13%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VBA:%20a%20probabilistic%20treatment%20of%20nonlinear%20models%20for%20neurobiological%20and%20behavioural%20data&rft.jtitle=PLoS%20computational%20biology&rft.au=Daunizeau,%20Jean&rft.date=2014-01-01&rft.volume=10&rft.issue=1&rft.spage=e1003441&rft.pages=e1003441-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003441&rft_dat=%3Cgale_plos_%3EA361551968%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492687432&rft_id=info:pmid/24465198&rft_galeid=A361551968&rft_doaj_id=oai_doaj_org_article_b575621fe94e4f40aa26b073218dd365&rfr_iscdi=true |