Synthesis and biological properties of fungal glucosylceramide
Once inside phagocytic cells, C. neoformans can either survive and replicate in the phagolysome, or it can once again reach the extracellular space by exiting these cells without killing them [7], [8]. Since the extracellular environment is neutral/alkaline whereas the intracellular (phagolysosome...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2014-01, Vol.10 (1), p.e1003832-e1003832 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: |
Once inside phagocytic cells, C. neoformans can either survive and replicate in the phagolysome, or it can once again reach the extracellular space by exiting these cells without killing them [7], [8]. Since the extracellular environment is neutral/alkaline whereas the intracellular (phagolysosome) is acidic, adaptation of C. neoformans to both environments is a critical feature for its survival and virulence in the host. [...]fungal GlcCer is a virulence determinant with a characteristic chemical structure and synthesized by fungal specific enzymes. Since it is produced by a variety of pathogenic fungi, targeting fungal GlcCer should improve the outcome of fungal infection diseases. |
---|---|
ISSN: | 1553-7374 1553-7366 1553-7374 |
DOI: | 10.1371/journal.ppat.1003832 |