Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC

Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. viva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS pathogens 2014-01, Vol.10 (1), p.e1003869-e1003869
Hauptverfasser: Batchelor, Joseph D, Malpede, Brian M, Omattage, Natalie S, DeKoster, Gregory T, Henzler-Wildman, Katherine A, Tolia, Niraj H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003869
container_issue 1
container_start_page e1003869
container_title PLoS pathogens
container_volume 10
creator Batchelor, Joseph D
Malpede, Brian M
Omattage, Natalie S
DeKoster, Gregory T
Henzler-Wildman, Katherine A
Tolia, Niraj H
description Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.
doi_str_mv 10.1371/journal.ppat.1003869
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1498392604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A364854373</galeid><doaj_id>oai_doaj_org_article_ea763e2b0e364f1d9a86332cb6ebbbb2</doaj_id><sourcerecordid>A364854373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-f412f125413add658fc3e78ca9f98b806e4002447534a3c228b715e5e02d849b3</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEoqXwDxBYYgOLGfxK4rBAGqY8RqqgGkBiZznOdfAoiQc7GbX_HqeTVo3EBnthy_nu8fHJTZLnBC8Jy8nbnRt8p5rlfq_6JcGYiax4kJySNGWLnOX84b39SfIkhB3GnDCSPU5OKOckLZg4TX5toUJl41yFNDQNst1BBes6VF6jy0aF1lV2aNHBHtTVOxR6P-h-8KpBZcQCMs6j8w-XCLpa1dBC1yNn0Plqu36aPDKqCfBsWs-Sn58-_lh_WVx8-7xZry4WOmOsXxhOqCE0jc5UVWWpMJpBLrQqTCFKgTPgGEe7ecq4YppSUeYkhRQwrQQvSnaWvDzq7hsX5BRKkIQXghU0wzwSmyNRObWTe29b5a-lU1beHDhfS-V7qxuQoPKMAS0xsIwbUhVKRJdUlxmUcdCo9X66bShbqHR8cAxjJjr_0tnfsnYHyYTIccGiwOtJwLs_A4RetjaMyasO3HDjG-eYUUYi-uqI1ipas51xUVGPuFxFeyLlLB8Fl_-g4qygtdp1YGw8nxW8mRVEpoervlZDCHLzffsf7Nc5y4-s9i4ED-YuFYLl2LG3P0eOHSunjo1lL-4neld026LsL01S5hk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490703231</pqid></control><display><type>article</type><title>Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Batchelor, Joseph D ; Malpede, Brian M ; Omattage, Natalie S ; DeKoster, Gregory T ; Henzler-Wildman, Katherine A ; Tolia, Niraj H</creator><contributor>Smith, Joe</contributor><creatorcontrib>Batchelor, Joseph D ; Malpede, Brian M ; Omattage, Natalie S ; DeKoster, Gregory T ; Henzler-Wildman, Katherine A ; Tolia, Niraj H ; Smith, Joe</creatorcontrib><description>Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1003869</identifier><identifier>PMID: 24415938</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antigens ; Antigens, Protozoan - chemistry ; Antigens, Protozoan - genetics ; Antigens, Protozoan - immunology ; Binding sites ; Binding sites (Biochemistry) ; Biology ; Biomedical research ; Blood ; Cell Line ; Chemokines ; Duffy Blood-Group System - chemistry ; Duffy Blood-Group System - genetics ; Duffy Blood-Group System - immunology ; Erythrocytes ; Erythrocytes - chemistry ; Erythrocytes - immunology ; Erythrocytes - parasitology ; Genotype &amp; phenotype ; Health aspects ; Host-parasite relationships ; Humans ; Immune Evasion ; Ligands ; Malaria, Vivax - genetics ; Malaria, Vivax - immunology ; Medicine ; Microbiological research ; Parasites ; Plasmodium ; Plasmodium vivax - chemistry ; Plasmodium vivax - immunology ; Plasmodium vivax - metabolism ; Point Mutation ; Protein Binding ; Proteins ; Protozoan Proteins - chemistry ; Protozoan Proteins - genetics ; Protozoan Proteins - immunology ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - immunology ; Structure-Activity Relationship ; Studies</subject><ispartof>PLoS pathogens, 2014-01, Vol.10 (1), p.e1003869-e1003869</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Batchelor et al 2014 Batchelor et al</rights><rights>2014 Batchelor et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler-Wildman KA, et al. (2014) Red Blood Cell Invasion by Plasmodium vivax: Structural Basis for DBP Engagement of DARC. PLoS Pathog 10(1): e1003869. doi:10.1371/journal.ppat.1003869</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-f412f125413add658fc3e78ca9f98b806e4002447534a3c228b715e5e02d849b3</citedby><cites>FETCH-LOGICAL-c633t-f412f125413add658fc3e78ca9f98b806e4002447534a3c228b715e5e02d849b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887093/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887093/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24415938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Smith, Joe</contributor><creatorcontrib>Batchelor, Joseph D</creatorcontrib><creatorcontrib>Malpede, Brian M</creatorcontrib><creatorcontrib>Omattage, Natalie S</creatorcontrib><creatorcontrib>DeKoster, Gregory T</creatorcontrib><creatorcontrib>Henzler-Wildman, Katherine A</creatorcontrib><creatorcontrib>Tolia, Niraj H</creatorcontrib><title>Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.</description><subject>Antigens</subject><subject>Antigens, Protozoan - chemistry</subject><subject>Antigens, Protozoan - genetics</subject><subject>Antigens, Protozoan - immunology</subject><subject>Binding sites</subject><subject>Binding sites (Biochemistry)</subject><subject>Biology</subject><subject>Biomedical research</subject><subject>Blood</subject><subject>Cell Line</subject><subject>Chemokines</subject><subject>Duffy Blood-Group System - chemistry</subject><subject>Duffy Blood-Group System - genetics</subject><subject>Duffy Blood-Group System - immunology</subject><subject>Erythrocytes</subject><subject>Erythrocytes - chemistry</subject><subject>Erythrocytes - immunology</subject><subject>Erythrocytes - parasitology</subject><subject>Genotype &amp; phenotype</subject><subject>Health aspects</subject><subject>Host-parasite relationships</subject><subject>Humans</subject><subject>Immune Evasion</subject><subject>Ligands</subject><subject>Malaria, Vivax - genetics</subject><subject>Malaria, Vivax - immunology</subject><subject>Medicine</subject><subject>Microbiological research</subject><subject>Parasites</subject><subject>Plasmodium</subject><subject>Plasmodium vivax - chemistry</subject><subject>Plasmodium vivax - immunology</subject><subject>Plasmodium vivax - metabolism</subject><subject>Point Mutation</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Protozoan Proteins - chemistry</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - immunology</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - immunology</subject><subject>Structure-Activity Relationship</subject><subject>Studies</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEoqXwDxBYYgOLGfxK4rBAGqY8RqqgGkBiZznOdfAoiQc7GbX_HqeTVo3EBnthy_nu8fHJTZLnBC8Jy8nbnRt8p5rlfq_6JcGYiax4kJySNGWLnOX84b39SfIkhB3GnDCSPU5OKOckLZg4TX5toUJl41yFNDQNst1BBes6VF6jy0aF1lV2aNHBHtTVOxR6P-h-8KpBZcQCMs6j8w-XCLpa1dBC1yNn0Plqu36aPDKqCfBsWs-Sn58-_lh_WVx8-7xZry4WOmOsXxhOqCE0jc5UVWWpMJpBLrQqTCFKgTPgGEe7ecq4YppSUeYkhRQwrQQvSnaWvDzq7hsX5BRKkIQXghU0wzwSmyNRObWTe29b5a-lU1beHDhfS-V7qxuQoPKMAS0xsIwbUhVKRJdUlxmUcdCo9X66bShbqHR8cAxjJjr_0tnfsnYHyYTIccGiwOtJwLs_A4RetjaMyasO3HDjG-eYUUYi-uqI1ipas51xUVGPuFxFeyLlLB8Fl_-g4qygtdp1YGw8nxW8mRVEpoervlZDCHLzffsf7Nc5y4-s9i4ED-YuFYLl2LG3P0eOHSunjo1lL-4neld026LsL01S5hk</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Batchelor, Joseph D</creator><creator>Malpede, Brian M</creator><creator>Omattage, Natalie S</creator><creator>DeKoster, Gregory T</creator><creator>Henzler-Wildman, Katherine A</creator><creator>Tolia, Niraj H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC</title><author>Batchelor, Joseph D ; Malpede, Brian M ; Omattage, Natalie S ; DeKoster, Gregory T ; Henzler-Wildman, Katherine A ; Tolia, Niraj H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-f412f125413add658fc3e78ca9f98b806e4002447534a3c228b715e5e02d849b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antigens</topic><topic>Antigens, Protozoan - chemistry</topic><topic>Antigens, Protozoan - genetics</topic><topic>Antigens, Protozoan - immunology</topic><topic>Binding sites</topic><topic>Binding sites (Biochemistry)</topic><topic>Biology</topic><topic>Biomedical research</topic><topic>Blood</topic><topic>Cell Line</topic><topic>Chemokines</topic><topic>Duffy Blood-Group System - chemistry</topic><topic>Duffy Blood-Group System - genetics</topic><topic>Duffy Blood-Group System - immunology</topic><topic>Erythrocytes</topic><topic>Erythrocytes - chemistry</topic><topic>Erythrocytes - immunology</topic><topic>Erythrocytes - parasitology</topic><topic>Genotype &amp; phenotype</topic><topic>Health aspects</topic><topic>Host-parasite relationships</topic><topic>Humans</topic><topic>Immune Evasion</topic><topic>Ligands</topic><topic>Malaria, Vivax - genetics</topic><topic>Malaria, Vivax - immunology</topic><topic>Medicine</topic><topic>Microbiological research</topic><topic>Parasites</topic><topic>Plasmodium</topic><topic>Plasmodium vivax - chemistry</topic><topic>Plasmodium vivax - immunology</topic><topic>Plasmodium vivax - metabolism</topic><topic>Point Mutation</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Protozoan Proteins - chemistry</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - immunology</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - immunology</topic><topic>Structure-Activity Relationship</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batchelor, Joseph D</creatorcontrib><creatorcontrib>Malpede, Brian M</creatorcontrib><creatorcontrib>Omattage, Natalie S</creatorcontrib><creatorcontrib>DeKoster, Gregory T</creatorcontrib><creatorcontrib>Henzler-Wildman, Katherine A</creatorcontrib><creatorcontrib>Tolia, Niraj H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batchelor, Joseph D</au><au>Malpede, Brian M</au><au>Omattage, Natalie S</au><au>DeKoster, Gregory T</au><au>Henzler-Wildman, Katherine A</au><au>Tolia, Niraj H</au><au>Smith, Joe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>1</issue><spage>e1003869</spage><epage>e1003869</epage><pages>e1003869-e1003869</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24415938</pmid><doi>10.1371/journal.ppat.1003869</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7374
ispartof PLoS pathogens, 2014-01, Vol.10 (1), p.e1003869-e1003869
issn 1553-7374
1553-7366
1553-7374
language eng
recordid cdi_plos_journals_1498392604
source MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antigens
Antigens, Protozoan - chemistry
Antigens, Protozoan - genetics
Antigens, Protozoan - immunology
Binding sites
Binding sites (Biochemistry)
Biology
Biomedical research
Blood
Cell Line
Chemokines
Duffy Blood-Group System - chemistry
Duffy Blood-Group System - genetics
Duffy Blood-Group System - immunology
Erythrocytes
Erythrocytes - chemistry
Erythrocytes - immunology
Erythrocytes - parasitology
Genotype & phenotype
Health aspects
Host-parasite relationships
Humans
Immune Evasion
Ligands
Malaria, Vivax - genetics
Malaria, Vivax - immunology
Medicine
Microbiological research
Parasites
Plasmodium
Plasmodium vivax - chemistry
Plasmodium vivax - immunology
Plasmodium vivax - metabolism
Point Mutation
Protein Binding
Proteins
Protozoan Proteins - chemistry
Protozoan Proteins - genetics
Protozoan Proteins - immunology
Receptors, Cell Surface - chemistry
Receptors, Cell Surface - genetics
Receptors, Cell Surface - immunology
Structure-Activity Relationship
Studies
title Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Red%20blood%20cell%20invasion%20by%20Plasmodium%20vivax:%20structural%20basis%20for%20DBP%20engagement%20of%20DARC&rft.jtitle=PLoS%20pathogens&rft.au=Batchelor,%20Joseph%20D&rft.date=2014-01-01&rft.volume=10&rft.issue=1&rft.spage=e1003869&rft.epage=e1003869&rft.pages=e1003869-e1003869&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1003869&rft_dat=%3Cgale_plos_%3EA364854373%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490703231&rft_id=info:pmid/24415938&rft_galeid=A364854373&rft_doaj_id=oai_doaj_org_article_ea763e2b0e364f1d9a86332cb6ebbbb2&rfr_iscdi=true