Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC
Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. viva...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2014-01, Vol.10 (1), p.e1003869-e1003869 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003869 |
---|---|
container_issue | 1 |
container_start_page | e1003869 |
container_title | PLoS pathogens |
container_volume | 10 |
creator | Batchelor, Joseph D Malpede, Brian M Omattage, Natalie S DeKoster, Gregory T Henzler-Wildman, Katherine A Tolia, Niraj H |
description | Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction. |
doi_str_mv | 10.1371/journal.ppat.1003869 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1498392604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A364854373</galeid><doaj_id>oai_doaj_org_article_ea763e2b0e364f1d9a86332cb6ebbbb2</doaj_id><sourcerecordid>A364854373</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-f412f125413add658fc3e78ca9f98b806e4002447534a3c228b715e5e02d849b3</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEoqXwDxBYYgOLGfxK4rBAGqY8RqqgGkBiZznOdfAoiQc7GbX_HqeTVo3EBnthy_nu8fHJTZLnBC8Jy8nbnRt8p5rlfq_6JcGYiax4kJySNGWLnOX84b39SfIkhB3GnDCSPU5OKOckLZg4TX5toUJl41yFNDQNst1BBes6VF6jy0aF1lV2aNHBHtTVOxR6P-h-8KpBZcQCMs6j8w-XCLpa1dBC1yNn0Plqu36aPDKqCfBsWs-Sn58-_lh_WVx8-7xZry4WOmOsXxhOqCE0jc5UVWWpMJpBLrQqTCFKgTPgGEe7ecq4YppSUeYkhRQwrQQvSnaWvDzq7hsX5BRKkIQXghU0wzwSmyNRObWTe29b5a-lU1beHDhfS-V7qxuQoPKMAS0xsIwbUhVKRJdUlxmUcdCo9X66bShbqHR8cAxjJjr_0tnfsnYHyYTIccGiwOtJwLs_A4RetjaMyasO3HDjG-eYUUYi-uqI1ipas51xUVGPuFxFeyLlLB8Fl_-g4qygtdp1YGw8nxW8mRVEpoervlZDCHLzffsf7Nc5y4-s9i4ED-YuFYLl2LG3P0eOHSunjo1lL-4neld026LsL01S5hk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490703231</pqid></control><display><type>article</type><title>Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Batchelor, Joseph D ; Malpede, Brian M ; Omattage, Natalie S ; DeKoster, Gregory T ; Henzler-Wildman, Katherine A ; Tolia, Niraj H</creator><contributor>Smith, Joe</contributor><creatorcontrib>Batchelor, Joseph D ; Malpede, Brian M ; Omattage, Natalie S ; DeKoster, Gregory T ; Henzler-Wildman, Katherine A ; Tolia, Niraj H ; Smith, Joe</creatorcontrib><description>Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1003869</identifier><identifier>PMID: 24415938</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antigens ; Antigens, Protozoan - chemistry ; Antigens, Protozoan - genetics ; Antigens, Protozoan - immunology ; Binding sites ; Binding sites (Biochemistry) ; Biology ; Biomedical research ; Blood ; Cell Line ; Chemokines ; Duffy Blood-Group System - chemistry ; Duffy Blood-Group System - genetics ; Duffy Blood-Group System - immunology ; Erythrocytes ; Erythrocytes - chemistry ; Erythrocytes - immunology ; Erythrocytes - parasitology ; Genotype & phenotype ; Health aspects ; Host-parasite relationships ; Humans ; Immune Evasion ; Ligands ; Malaria, Vivax - genetics ; Malaria, Vivax - immunology ; Medicine ; Microbiological research ; Parasites ; Plasmodium ; Plasmodium vivax - chemistry ; Plasmodium vivax - immunology ; Plasmodium vivax - metabolism ; Point Mutation ; Protein Binding ; Proteins ; Protozoan Proteins - chemistry ; Protozoan Proteins - genetics ; Protozoan Proteins - immunology ; Receptors, Cell Surface - chemistry ; Receptors, Cell Surface - genetics ; Receptors, Cell Surface - immunology ; Structure-Activity Relationship ; Studies</subject><ispartof>PLoS pathogens, 2014-01, Vol.10 (1), p.e1003869-e1003869</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Batchelor et al 2014 Batchelor et al</rights><rights>2014 Batchelor et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Batchelor JD, Malpede BM, Omattage NS, DeKoster GT, Henzler-Wildman KA, et al. (2014) Red Blood Cell Invasion by Plasmodium vivax: Structural Basis for DBP Engagement of DARC. PLoS Pathog 10(1): e1003869. doi:10.1371/journal.ppat.1003869</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-f412f125413add658fc3e78ca9f98b806e4002447534a3c228b715e5e02d849b3</citedby><cites>FETCH-LOGICAL-c633t-f412f125413add658fc3e78ca9f98b806e4002447534a3c228b715e5e02d849b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887093/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3887093/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24415938$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Smith, Joe</contributor><creatorcontrib>Batchelor, Joseph D</creatorcontrib><creatorcontrib>Malpede, Brian M</creatorcontrib><creatorcontrib>Omattage, Natalie S</creatorcontrib><creatorcontrib>DeKoster, Gregory T</creatorcontrib><creatorcontrib>Henzler-Wildman, Katherine A</creatorcontrib><creatorcontrib>Tolia, Niraj H</creatorcontrib><title>Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.</description><subject>Antigens</subject><subject>Antigens, Protozoan - chemistry</subject><subject>Antigens, Protozoan - genetics</subject><subject>Antigens, Protozoan - immunology</subject><subject>Binding sites</subject><subject>Binding sites (Biochemistry)</subject><subject>Biology</subject><subject>Biomedical research</subject><subject>Blood</subject><subject>Cell Line</subject><subject>Chemokines</subject><subject>Duffy Blood-Group System - chemistry</subject><subject>Duffy Blood-Group System - genetics</subject><subject>Duffy Blood-Group System - immunology</subject><subject>Erythrocytes</subject><subject>Erythrocytes - chemistry</subject><subject>Erythrocytes - immunology</subject><subject>Erythrocytes - parasitology</subject><subject>Genotype & phenotype</subject><subject>Health aspects</subject><subject>Host-parasite relationships</subject><subject>Humans</subject><subject>Immune Evasion</subject><subject>Ligands</subject><subject>Malaria, Vivax - genetics</subject><subject>Malaria, Vivax - immunology</subject><subject>Medicine</subject><subject>Microbiological research</subject><subject>Parasites</subject><subject>Plasmodium</subject><subject>Plasmodium vivax - chemistry</subject><subject>Plasmodium vivax - immunology</subject><subject>Plasmodium vivax - metabolism</subject><subject>Point Mutation</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Protozoan Proteins - chemistry</subject><subject>Protozoan Proteins - genetics</subject><subject>Protozoan Proteins - immunology</subject><subject>Receptors, Cell Surface - chemistry</subject><subject>Receptors, Cell Surface - genetics</subject><subject>Receptors, Cell Surface - immunology</subject><subject>Structure-Activity Relationship</subject><subject>Studies</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEoqXwDxBYYgOLGfxK4rBAGqY8RqqgGkBiZznOdfAoiQc7GbX_HqeTVo3EBnthy_nu8fHJTZLnBC8Jy8nbnRt8p5rlfq_6JcGYiax4kJySNGWLnOX84b39SfIkhB3GnDCSPU5OKOckLZg4TX5toUJl41yFNDQNst1BBes6VF6jy0aF1lV2aNHBHtTVOxR6P-h-8KpBZcQCMs6j8w-XCLpa1dBC1yNn0Plqu36aPDKqCfBsWs-Sn58-_lh_WVx8-7xZry4WOmOsXxhOqCE0jc5UVWWpMJpBLrQqTCFKgTPgGEe7ecq4YppSUeYkhRQwrQQvSnaWvDzq7hsX5BRKkIQXghU0wzwSmyNRObWTe29b5a-lU1beHDhfS-V7qxuQoPKMAS0xsIwbUhVKRJdUlxmUcdCo9X66bShbqHR8cAxjJjr_0tnfsnYHyYTIccGiwOtJwLs_A4RetjaMyasO3HDjG-eYUUYi-uqI1ipas51xUVGPuFxFeyLlLB8Fl_-g4qygtdp1YGw8nxW8mRVEpoervlZDCHLzffsf7Nc5y4-s9i4ED-YuFYLl2LG3P0eOHSunjo1lL-4neld026LsL01S5hk</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Batchelor, Joseph D</creator><creator>Malpede, Brian M</creator><creator>Omattage, Natalie S</creator><creator>DeKoster, Gregory T</creator><creator>Henzler-Wildman, Katherine A</creator><creator>Tolia, Niraj H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140101</creationdate><title>Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC</title><author>Batchelor, Joseph D ; Malpede, Brian M ; Omattage, Natalie S ; DeKoster, Gregory T ; Henzler-Wildman, Katherine A ; Tolia, Niraj H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-f412f125413add658fc3e78ca9f98b806e4002447534a3c228b715e5e02d849b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Antigens</topic><topic>Antigens, Protozoan - chemistry</topic><topic>Antigens, Protozoan - genetics</topic><topic>Antigens, Protozoan - immunology</topic><topic>Binding sites</topic><topic>Binding sites (Biochemistry)</topic><topic>Biology</topic><topic>Biomedical research</topic><topic>Blood</topic><topic>Cell Line</topic><topic>Chemokines</topic><topic>Duffy Blood-Group System - chemistry</topic><topic>Duffy Blood-Group System - genetics</topic><topic>Duffy Blood-Group System - immunology</topic><topic>Erythrocytes</topic><topic>Erythrocytes - chemistry</topic><topic>Erythrocytes - immunology</topic><topic>Erythrocytes - parasitology</topic><topic>Genotype & phenotype</topic><topic>Health aspects</topic><topic>Host-parasite relationships</topic><topic>Humans</topic><topic>Immune Evasion</topic><topic>Ligands</topic><topic>Malaria, Vivax - genetics</topic><topic>Malaria, Vivax - immunology</topic><topic>Medicine</topic><topic>Microbiological research</topic><topic>Parasites</topic><topic>Plasmodium</topic><topic>Plasmodium vivax - chemistry</topic><topic>Plasmodium vivax - immunology</topic><topic>Plasmodium vivax - metabolism</topic><topic>Point Mutation</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Protozoan Proteins - chemistry</topic><topic>Protozoan Proteins - genetics</topic><topic>Protozoan Proteins - immunology</topic><topic>Receptors, Cell Surface - chemistry</topic><topic>Receptors, Cell Surface - genetics</topic><topic>Receptors, Cell Surface - immunology</topic><topic>Structure-Activity Relationship</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Batchelor, Joseph D</creatorcontrib><creatorcontrib>Malpede, Brian M</creatorcontrib><creatorcontrib>Omattage, Natalie S</creatorcontrib><creatorcontrib>DeKoster, Gregory T</creatorcontrib><creatorcontrib>Henzler-Wildman, Katherine A</creatorcontrib><creatorcontrib>Tolia, Niraj H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Batchelor, Joseph D</au><au>Malpede, Brian M</au><au>Omattage, Natalie S</au><au>DeKoster, Gregory T</au><au>Henzler-Wildman, Katherine A</au><au>Tolia, Niraj H</au><au>Smith, Joe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>1</issue><spage>e1003869</spage><epage>e1003869</epage><pages>e1003869-e1003869</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Plasmodium parasites use specialized ligands which bind to red blood cell (RBC) receptors during invasion. Defining the mechanism of receptor recognition is essential for the design of interventions against malaria. Here, we present the structural basis for Duffy antigen (DARC) engagement by P. vivax Duffy binding protein (DBP). We used NMR to map the core region of the DARC ectodomain contacted by the receptor binding domain of DBP (DBP-RII) and solved two distinct crystal structures of DBP-RII bound to this core region of DARC. Isothermal titration calorimetry studies show these structures are part of a multi-step binding pathway, and individual point mutations of residues contacting DARC result in a complete loss of RBC binding by DBP-RII. Two DBP-RII molecules sandwich either one or two DARC ectodomains, creating distinct heterotrimeric and heterotetrameric architectures. The DARC N-terminus forms an amphipathic helix upon DBP-RII binding. The studies reveal a receptor binding pocket in DBP and critical contacts in DARC, reveal novel targets for intervention, and suggest that targeting the critical DARC binding sites will lead to potent disruption of RBC engagement as complex assembly is dependent on DARC binding. These results allow for models to examine inter-species infection barriers, Plasmodium immune evasion mechanisms, P. knowlesi receptor-ligand specificity, and mechanisms of naturally acquired P. vivax immunity. The step-wise binding model identifies a possible mechanism by which signaling pathways could be activated during invasion. It is anticipated that the structural basis of DBP host-cell engagement will enable development of rational therapeutics targeting this interaction.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24415938</pmid><doi>10.1371/journal.ppat.1003869</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2014-01, Vol.10 (1), p.e1003869-e1003869 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_1498392604 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Antigens Antigens, Protozoan - chemistry Antigens, Protozoan - genetics Antigens, Protozoan - immunology Binding sites Binding sites (Biochemistry) Biology Biomedical research Blood Cell Line Chemokines Duffy Blood-Group System - chemistry Duffy Blood-Group System - genetics Duffy Blood-Group System - immunology Erythrocytes Erythrocytes - chemistry Erythrocytes - immunology Erythrocytes - parasitology Genotype & phenotype Health aspects Host-parasite relationships Humans Immune Evasion Ligands Malaria, Vivax - genetics Malaria, Vivax - immunology Medicine Microbiological research Parasites Plasmodium Plasmodium vivax - chemistry Plasmodium vivax - immunology Plasmodium vivax - metabolism Point Mutation Protein Binding Proteins Protozoan Proteins - chemistry Protozoan Proteins - genetics Protozoan Proteins - immunology Receptors, Cell Surface - chemistry Receptors, Cell Surface - genetics Receptors, Cell Surface - immunology Structure-Activity Relationship Studies |
title | Red blood cell invasion by Plasmodium vivax: structural basis for DBP engagement of DARC |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A29%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Red%20blood%20cell%20invasion%20by%20Plasmodium%20vivax:%20structural%20basis%20for%20DBP%20engagement%20of%20DARC&rft.jtitle=PLoS%20pathogens&rft.au=Batchelor,%20Joseph%20D&rft.date=2014-01-01&rft.volume=10&rft.issue=1&rft.spage=e1003869&rft.epage=e1003869&rft.pages=e1003869-e1003869&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1003869&rft_dat=%3Cgale_plos_%3EA364854373%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490703231&rft_id=info:pmid/24415938&rft_galeid=A364854373&rft_doaj_id=oai_doaj_org_article_ea763e2b0e364f1d9a86332cb6ebbbb2&rfr_iscdi=true |