The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea

Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2014-01, Vol.10 (1), p.e1004040
Hauptverfasser: Schumacher, Julia, Simon, Adeline, Cohrs, Kim Christopher, Viaud, Muriel, Tudzynski, Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e1004040
container_title PLoS genetics
container_volume 10
creator Schumacher, Julia
Simon, Adeline
Cohrs, Kim Christopher
Viaud, Muriel
Tudzynski, Paul
description Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress--even in the absence of light--and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light or arising during host infection.
doi_str_mv 10.1371/journal.pgen.1004040
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1498391603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A361352125</galeid><doaj_id>oai_doaj_org_article_590c55033eee4c95898fc9479baebd63</doaj_id><sourcerecordid>A361352125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c732t-3b710e67563915b45d3e396502a271624c24c6b567cf5d778c3678d23ecf94e73</originalsourceid><addsrcrecordid>eNqVk-Fr1DAYxosobk7_A9GAIOzDnUnTNO2XwW04d3A40NOvIU3fthm9pCTp4fCfN-fdxlX8oKTQNO_veRqe5E2S1wTPCeXkw50dnZH9fGjBzAnGWRxPklPCGJ3x-PH0aH6SvPD-DmPKipI_T07SLCOszPhp8nPdAQpOGq-cHoK2BjVSBevQpVqtrwly0I69DODRVruxB6MASVOjXrddiFU_WONjVRsUopUB5Wxwdui0QkMvTUCDDJ2Nm0SXsXAftEdKG3AgXybPGtl7eHV4nyXfrj-ur25mq9tPy6vFaqY4TcOMVpxgyDnLaUlYlbGaAi1zhlOZcpKnmYpPXrGcq4bVnBeK5ryoUwqqKTPg9Cx5u_cdeuvFITcvSFYW0THHNBLLPVFbeScGpzfS3Qsrtfi9YF0rpAta9SBYiRVjUQMAmSpjoEWjYpRlJaGq853XxeFvY7WBWoGJ8fYT02nF6E60ditoUeQlzqLB-d6g-0N2s1iJ3RommJSMFVsS2Xd7tpVxb9o0MWKpNtorsaA5oSwlKYvU_C9UHDVstLIGGh3XJ4LziSAyAX6EVo7ei-XXL__Bfv539vb7lH1_xHYg-9B524-7O-qnYLYH483z3kHzGBrBYtcqD0cudq0iDq0SZW-Oz-lR9NAb9BfnLQ4i</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Schumacher, Julia ; Simon, Adeline ; Cohrs, Kim Christopher ; Viaud, Muriel ; Tudzynski, Paul</creator><contributor>Dunlap, Jay C.</contributor><creatorcontrib>Schumacher, Julia ; Simon, Adeline ; Cohrs, Kim Christopher ; Viaud, Muriel ; Tudzynski, Paul ; Dunlap, Jay C.</creatorcontrib><description>Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress--even in the absence of light--and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light or arising during host infection.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1004040</identifier><identifier>PMID: 24415947</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agricultural sciences ; Aspergillus nidulans - genetics ; Biology ; Biosynthesis ; Botrytis ; Botrytis - genetics ; Botrytis - pathogenicity ; Dehydrogenases ; Enzymes ; Fungi ; GATA Transcription Factors - genetics ; GATA Transcription Factors - isolation &amp; purification ; Gene Expression Regulation, Fungal ; Genes ; Genetic aspects ; Genomics ; Health aspects ; Infections ; Life Sciences ; Light ; Metabolites ; Microbiological research ; Mitochondrial Proteins - genetics ; Oxidative stress ; Oxidative Stress - genetics ; Oxidoreductases - genetics ; Physiological aspects ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant Proteins - genetics ; Plants - genetics ; Plants - microbiology ; Reactive Oxygen Species - metabolism ; Transcription factors ; Virulence (Microbiology) ; Virulence - genetics</subject><ispartof>PLoS genetics, 2014-01, Vol.10 (1), p.e1004040</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2014 Schumacher et al 2014 Schumacher et al</rights><rights>2014 Schumacher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schumacher J, Simon A, Cohrs KC, Viaud M, Tudzynski P (2014) The Transcription Factor BcLTF1 Regulates Virulence and Light Responses in the Necrotrophic Plant Pathogen Botrytis cinerea. PLoS Genet 10(1): e1004040. doi:10.1371/journal.pgen.1004040</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c732t-3b710e67563915b45d3e396502a271624c24c6b567cf5d778c3678d23ecf94e73</citedby><cites>FETCH-LOGICAL-c732t-3b710e67563915b45d3e396502a271624c24c6b567cf5d778c3678d23ecf94e73</cites><orcidid>0000-0001-6509-7315 ; 0000-0002-0020-6442 ; 0000-0001-8341-0555</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886904/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3886904/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24415947$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01019558$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Dunlap, Jay C.</contributor><creatorcontrib>Schumacher, Julia</creatorcontrib><creatorcontrib>Simon, Adeline</creatorcontrib><creatorcontrib>Cohrs, Kim Christopher</creatorcontrib><creatorcontrib>Viaud, Muriel</creatorcontrib><creatorcontrib>Tudzynski, Paul</creatorcontrib><title>The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress--even in the absence of light--and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light or arising during host infection.</description><subject>Agricultural sciences</subject><subject>Aspergillus nidulans - genetics</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Botrytis</subject><subject>Botrytis - genetics</subject><subject>Botrytis - pathogenicity</subject><subject>Dehydrogenases</subject><subject>Enzymes</subject><subject>Fungi</subject><subject>GATA Transcription Factors - genetics</subject><subject>GATA Transcription Factors - isolation &amp; purification</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Health aspects</subject><subject>Infections</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Metabolites</subject><subject>Microbiological research</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - genetics</subject><subject>Oxidoreductases - genetics</subject><subject>Physiological aspects</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Proteins - genetics</subject><subject>Plants - genetics</subject><subject>Plants - microbiology</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Transcription factors</subject><subject>Virulence (Microbiology)</subject><subject>Virulence - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk-Fr1DAYxosobk7_A9GAIOzDnUnTNO2XwW04d3A40NOvIU3fthm9pCTp4fCfN-fdxlX8oKTQNO_veRqe5E2S1wTPCeXkw50dnZH9fGjBzAnGWRxPklPCGJ3x-PH0aH6SvPD-DmPKipI_T07SLCOszPhp8nPdAQpOGq-cHoK2BjVSBevQpVqtrwly0I69DODRVruxB6MASVOjXrddiFU_WONjVRsUopUB5Wxwdui0QkMvTUCDDJ2Nm0SXsXAftEdKG3AgXybPGtl7eHV4nyXfrj-ur25mq9tPy6vFaqY4TcOMVpxgyDnLaUlYlbGaAi1zhlOZcpKnmYpPXrGcq4bVnBeK5ryoUwqqKTPg9Cx5u_cdeuvFITcvSFYW0THHNBLLPVFbeScGpzfS3Qsrtfi9YF0rpAta9SBYiRVjUQMAmSpjoEWjYpRlJaGq853XxeFvY7WBWoGJ8fYT02nF6E60ditoUeQlzqLB-d6g-0N2s1iJ3RommJSMFVsS2Xd7tpVxb9o0MWKpNtorsaA5oSwlKYvU_C9UHDVstLIGGh3XJ4LziSAyAX6EVo7ei-XXL__Bfv539vb7lH1_xHYg-9B524-7O-qnYLYH483z3kHzGBrBYtcqD0cudq0iDq0SZW-Oz-lR9NAb9BfnLQ4i</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Schumacher, Julia</creator><creator>Simon, Adeline</creator><creator>Cohrs, Kim Christopher</creator><creator>Viaud, Muriel</creator><creator>Tudzynski, Paul</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6509-7315</orcidid><orcidid>https://orcid.org/0000-0002-0020-6442</orcidid><orcidid>https://orcid.org/0000-0001-8341-0555</orcidid></search><sort><creationdate>20140101</creationdate><title>The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea</title><author>Schumacher, Julia ; Simon, Adeline ; Cohrs, Kim Christopher ; Viaud, Muriel ; Tudzynski, Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c732t-3b710e67563915b45d3e396502a271624c24c6b567cf5d778c3678d23ecf94e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agricultural sciences</topic><topic>Aspergillus nidulans - genetics</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Botrytis</topic><topic>Botrytis - genetics</topic><topic>Botrytis - pathogenicity</topic><topic>Dehydrogenases</topic><topic>Enzymes</topic><topic>Fungi</topic><topic>GATA Transcription Factors - genetics</topic><topic>GATA Transcription Factors - isolation &amp; purification</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Health aspects</topic><topic>Infections</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Metabolites</topic><topic>Microbiological research</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - genetics</topic><topic>Oxidoreductases - genetics</topic><topic>Physiological aspects</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Proteins - genetics</topic><topic>Plants - genetics</topic><topic>Plants - microbiology</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Transcription factors</topic><topic>Virulence (Microbiology)</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schumacher, Julia</creatorcontrib><creatorcontrib>Simon, Adeline</creatorcontrib><creatorcontrib>Cohrs, Kim Christopher</creatorcontrib><creatorcontrib>Viaud, Muriel</creatorcontrib><creatorcontrib>Tudzynski, Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schumacher, Julia</au><au>Simon, Adeline</au><au>Cohrs, Kim Christopher</au><au>Viaud, Muriel</au><au>Tudzynski, Paul</au><au>Dunlap, Jay C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>1</issue><spage>e1004040</spage><pages>e1004040-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Botrytis cinerea is the causal agent of gray mold diseases in a range of dicotyledonous plant species. The fungus can reproduce asexually by forming macroconidia for dispersal and sclerotia for survival; the latter also participate in sexual reproduction by bearing the apothecia after fertilization by microconidia. Light induces the differentiation of conidia and apothecia, while sclerotia are exclusively formed in the absence of light. The relevance of light for virulence of the fungus is not obvious, but infections are observed under natural illumination as well as in constant darkness. By a random mutagenesis approach, we identified a novel virulence-related gene encoding a GATA transcription factor (BcLTF1 for light-responsive TF1) with characterized homologues in Aspergillus nidulans (NsdD) and Neurospora crassa (SUB-1). By deletion and over-expression of bcltf1, we confirmed the predicted role of the transcription factor in virulence, and discovered furthermore its functions in regulation of light-dependent differentiation, the equilibrium between production and scavenging of reactive oxygen species (ROS), and secondary metabolism. Microarray analyses revealed 293 light-responsive genes, and that the expression levels of the majority of these genes (66%) are modulated by BcLTF1. In addition, the deletion of bcltf1 affects the expression of 1,539 genes irrespective of the light conditions, including the overexpression of known and so far uncharacterized secondary metabolism-related genes. Increased expression of genes encoding alternative respiration enzymes, such as the alternative oxidase (AOX), suggest a mitochondrial dysfunction in the absence of bcltf1. The hypersensitivity of Δbctlf1 mutants to exogenously applied oxidative stress--even in the absence of light--and the restoration of virulence and growth rates in continuous light by antioxidants, indicate that BcLTF1 is required to cope with oxidative stress that is caused either by exposure to light or arising during host infection.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24415947</pmid><doi>10.1371/journal.pgen.1004040</doi><orcidid>https://orcid.org/0000-0001-6509-7315</orcidid><orcidid>https://orcid.org/0000-0002-0020-6442</orcidid><orcidid>https://orcid.org/0000-0001-8341-0555</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2014-01, Vol.10 (1), p.e1004040
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1498391603
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Agricultural sciences
Aspergillus nidulans - genetics
Biology
Biosynthesis
Botrytis
Botrytis - genetics
Botrytis - pathogenicity
Dehydrogenases
Enzymes
Fungi
GATA Transcription Factors - genetics
GATA Transcription Factors - isolation & purification
Gene Expression Regulation, Fungal
Genes
Genetic aspects
Genomics
Health aspects
Infections
Life Sciences
Light
Metabolites
Microbiological research
Mitochondrial Proteins - genetics
Oxidative stress
Oxidative Stress - genetics
Oxidoreductases - genetics
Physiological aspects
Plant Diseases - genetics
Plant Diseases - microbiology
Plant Proteins - genetics
Plants - genetics
Plants - microbiology
Reactive Oxygen Species - metabolism
Transcription factors
Virulence (Microbiology)
Virulence - genetics
title The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A08%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20transcription%20factor%20BcLTF1%20regulates%20virulence%20and%20light%20responses%20in%20the%20necrotrophic%20plant%20pathogen%20Botrytis%20cinerea&rft.jtitle=PLoS%20genetics&rft.au=Schumacher,%20Julia&rft.date=2014-01-01&rft.volume=10&rft.issue=1&rft.spage=e1004040&rft.pages=e1004040-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1004040&rft_dat=%3Cgale_plos_%3EA361352125%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24415947&rft_galeid=A361352125&rft_doaj_id=oai_doaj_org_article_590c55033eee4c95898fc9479baebd63&rfr_iscdi=true