Functional relevance of AcrB Trimerization in pump assembly and substrate binding

AcrB is a multidrug transporter in the inner membrane of Escherichia coli. It is an obligate homotrimer and forms a tripartite efflux complex with AcrA and TolC. AcrB is the engine of the efflux machinery and determines substrate specificity. Active efflux depends on several functional features incl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-02, Vol.9 (2), p.e89143-e89143
Hauptverfasser: Lu, Wei, Zhong, Meng, Chai, Qian, Wang, Zhaoshuai, Yu, Linliang, Wei, Yinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e89143
container_issue 2
container_start_page e89143
container_title PloS one
container_volume 9
creator Lu, Wei
Zhong, Meng
Chai, Qian
Wang, Zhaoshuai
Yu, Linliang
Wei, Yinan
description AcrB is a multidrug transporter in the inner membrane of Escherichia coli. It is an obligate homotrimer and forms a tripartite efflux complex with AcrA and TolC. AcrB is the engine of the efflux machinery and determines substrate specificity. Active efflux depends on several functional features including proton translocation across the inner membrane through a proton relay pathway in the transmembrane domain of AcrB; substrate binding and migration through the substrate translocation pathway; the interaction of AcrB with AcrA and TolC; and the formation of AcrB homotrimer. Here we investigated two aspects of the inter-correlation between these functional features, the dependence of AcrA-AcrB interaction on AcrB trimerization, and the reliance of substrate binding and penetration on protein-protein interaction. Interaction between AcrA and AcrB was investigated through chemical crosslinking, and a previously established in vivo fluorescent labeling method was used to probe substrate binding. Our data suggested that dissociation of the AcrB trimer drastically decreased its interaction with AcrA. In addition, while substrate binding with AcrB seemed to be irrelevant to the presence or absence of AcrA and TolC, the capability of trimerization and conduction of proton influx did affect substrate binding at selected sites along the substrate translocation pathway in AcrB.
doi_str_mv 10.1371/journal.pone.0089143
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1498237519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478803629</galeid><doaj_id>oai_doaj_org_article_fc8deda759f74af9858fe35b8692607b</doaj_id><sourcerecordid>A478803629</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-4a76f0c6139421252e6ce83698fd1626253986309383297d40325abff0195da3</originalsourceid><addsrcrecordid>eNqNkl9v0zAUxSMEYlvhGyCIhDTBQ4v_xI79glQmBpUmTUDFq-U4dusqsTs7mRifHodmU4P2gPwQ6-Z3z825OVn2CoIFxCX8sPN9cLJZ7L3TCwAYhwV-kp1CjtGcIoCfHt1PsrMYdwAQzCh9np2gghCIcHGafbvsneqsT0p50I2-lU7p3Jt8qcKnfB1sq4P9LQcity7f9-0-lzHqtmrucunqPPZV7ILsdF5ZV1u3eZE9M7KJ-uX4nGXry8_ri6_zq-svq4vl1VyVhHXzQpbUAEUh5gWCiCBNlWaYcmZqSBFFBHNGMeCYYcTLugAYEVkZAyAntcSz7M1Bdt_4KMZlRAELzhAuSbI-y1YHovZyJ_bJigx3wksr_hZ82AgZOqsaLYxita5lSbgpC2k4I8xoTCpGOaKgrJLWx3FaX7W6Vtolz81EdPrG2a3Y-FuBebKGUBJ4NwoEf9Pr2InWRqWbRjrt-_TdBACaxmKc0Lf_oI-7G6mNTAasMz7NVYOoWBYlYwBTNFCLR6h0at1alZJjbKpPGt5PGhLT6V_dRvYxitWP7__PXv-csudH7FbLpttG3_RDsOIULA6gCj7GoM3DkiEQQ_DvtyGG4Isx-Knt9fEPemi6Tzr-AzHK_Bk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1498237519</pqid></control><display><type>article</type><title>Functional relevance of AcrB Trimerization in pump assembly and substrate binding</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lu, Wei ; Zhong, Meng ; Chai, Qian ; Wang, Zhaoshuai ; Yu, Linliang ; Wei, Yinan</creator><contributor>Cascales, Eric</contributor><creatorcontrib>Lu, Wei ; Zhong, Meng ; Chai, Qian ; Wang, Zhaoshuai ; Yu, Linliang ; Wei, Yinan ; Cascales, Eric</creatorcontrib><description>AcrB is a multidrug transporter in the inner membrane of Escherichia coli. It is an obligate homotrimer and forms a tripartite efflux complex with AcrA and TolC. AcrB is the engine of the efflux machinery and determines substrate specificity. Active efflux depends on several functional features including proton translocation across the inner membrane through a proton relay pathway in the transmembrane domain of AcrB; substrate binding and migration through the substrate translocation pathway; the interaction of AcrB with AcrA and TolC; and the formation of AcrB homotrimer. Here we investigated two aspects of the inter-correlation between these functional features, the dependence of AcrA-AcrB interaction on AcrB trimerization, and the reliance of substrate binding and penetration on protein-protein interaction. Interaction between AcrA and AcrB was investigated through chemical crosslinking, and a previously established in vivo fluorescent labeling method was used to probe substrate binding. Our data suggested that dissociation of the AcrB trimer drastically decreased its interaction with AcrA. In addition, while substrate binding with AcrB seemed to be irrelevant to the presence or absence of AcrA and TolC, the capability of trimerization and conduction of proton influx did affect substrate binding at selected sites along the substrate translocation pathway in AcrB.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0089143</identifier><identifier>PMID: 24551234</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acids - metabolism ; Bacterial Outer Membrane Proteins - metabolism ; Binding ; Biochemistry ; Biology ; Conduction ; Cross-Linking Reagents - pharmacology ; Crosslinking ; Cysteine - genetics ; Dissociation ; E coli ; Efflux ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Fluorescence ; Gene Knockout Techniques ; In vivo methods and tests ; Labeling ; Machinery and equipment ; Membrane Transport Proteins - metabolism ; Microbial Sensitivity Tests ; Migration ; Models, Molecular ; Multidrug Resistance-Associated Proteins - chemistry ; Multidrug Resistance-Associated Proteins - metabolism ; Mutant Proteins - metabolism ; Mutation - genetics ; Protein Binding ; Protein interaction ; Protein Multimerization - drug effects ; Protein Structure, Secondary ; Protein-protein interactions ; Proteins ; Protons ; Studies ; Substrate specificity ; Substrate Specificity - drug effects ; Substrates ; Translocation</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e89143-e89143</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Lu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Lu et al 2014 Lu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-4a76f0c6139421252e6ce83698fd1626253986309383297d40325abff0195da3</citedby><cites>FETCH-LOGICAL-c758t-4a76f0c6139421252e6ce83698fd1626253986309383297d40325abff0195da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925222/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3925222/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24551234$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cascales, Eric</contributor><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Zhong, Meng</creatorcontrib><creatorcontrib>Chai, Qian</creatorcontrib><creatorcontrib>Wang, Zhaoshuai</creatorcontrib><creatorcontrib>Yu, Linliang</creatorcontrib><creatorcontrib>Wei, Yinan</creatorcontrib><title>Functional relevance of AcrB Trimerization in pump assembly and substrate binding</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>AcrB is a multidrug transporter in the inner membrane of Escherichia coli. It is an obligate homotrimer and forms a tripartite efflux complex with AcrA and TolC. AcrB is the engine of the efflux machinery and determines substrate specificity. Active efflux depends on several functional features including proton translocation across the inner membrane through a proton relay pathway in the transmembrane domain of AcrB; substrate binding and migration through the substrate translocation pathway; the interaction of AcrB with AcrA and TolC; and the formation of AcrB homotrimer. Here we investigated two aspects of the inter-correlation between these functional features, the dependence of AcrA-AcrB interaction on AcrB trimerization, and the reliance of substrate binding and penetration on protein-protein interaction. Interaction between AcrA and AcrB was investigated through chemical crosslinking, and a previously established in vivo fluorescent labeling method was used to probe substrate binding. Our data suggested that dissociation of the AcrB trimer drastically decreased its interaction with AcrA. In addition, while substrate binding with AcrB seemed to be irrelevant to the presence or absence of AcrA and TolC, the capability of trimerization and conduction of proton influx did affect substrate binding at selected sites along the substrate translocation pathway in AcrB.</description><subject>Amino Acids - metabolism</subject><subject>Bacterial Outer Membrane Proteins - metabolism</subject><subject>Binding</subject><subject>Biochemistry</subject><subject>Biology</subject><subject>Conduction</subject><subject>Cross-Linking Reagents - pharmacology</subject><subject>Crosslinking</subject><subject>Cysteine - genetics</subject><subject>Dissociation</subject><subject>E coli</subject><subject>Efflux</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Fluorescence</subject><subject>Gene Knockout Techniques</subject><subject>In vivo methods and tests</subject><subject>Labeling</subject><subject>Machinery and equipment</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Microbial Sensitivity Tests</subject><subject>Migration</subject><subject>Models, Molecular</subject><subject>Multidrug Resistance-Associated Proteins - chemistry</subject><subject>Multidrug Resistance-Associated Proteins - metabolism</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation - genetics</subject><subject>Protein Binding</subject><subject>Protein interaction</subject><subject>Protein Multimerization - drug effects</subject><subject>Protein Structure, Secondary</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Protons</subject><subject>Studies</subject><subject>Substrate specificity</subject><subject>Substrate Specificity - drug effects</subject><subject>Substrates</subject><subject>Translocation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9v0zAUxSMEYlvhGyCIhDTBQ4v_xI79glQmBpUmTUDFq-U4dusqsTs7mRifHodmU4P2gPwQ6-Z3z825OVn2CoIFxCX8sPN9cLJZ7L3TCwAYhwV-kp1CjtGcIoCfHt1PsrMYdwAQzCh9np2gghCIcHGafbvsneqsT0p50I2-lU7p3Jt8qcKnfB1sq4P9LQcity7f9-0-lzHqtmrucunqPPZV7ILsdF5ZV1u3eZE9M7KJ-uX4nGXry8_ri6_zq-svq4vl1VyVhHXzQpbUAEUh5gWCiCBNlWaYcmZqSBFFBHNGMeCYYcTLugAYEVkZAyAntcSz7M1Bdt_4KMZlRAELzhAuSbI-y1YHovZyJ_bJigx3wksr_hZ82AgZOqsaLYxita5lSbgpC2k4I8xoTCpGOaKgrJLWx3FaX7W6Vtolz81EdPrG2a3Y-FuBebKGUBJ4NwoEf9Pr2InWRqWbRjrt-_TdBACaxmKc0Lf_oI-7G6mNTAasMz7NVYOoWBYlYwBTNFCLR6h0at1alZJjbKpPGt5PGhLT6V_dRvYxitWP7__PXv-csudH7FbLpttG3_RDsOIULA6gCj7GoM3DkiEQQ_DvtyGG4Isx-Knt9fEPemi6Tzr-AzHK_Bk</recordid><startdate>20140214</startdate><enddate>20140214</enddate><creator>Lu, Wei</creator><creator>Zhong, Meng</creator><creator>Chai, Qian</creator><creator>Wang, Zhaoshuai</creator><creator>Yu, Linliang</creator><creator>Wei, Yinan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140214</creationdate><title>Functional relevance of AcrB Trimerization in pump assembly and substrate binding</title><author>Lu, Wei ; Zhong, Meng ; Chai, Qian ; Wang, Zhaoshuai ; Yu, Linliang ; Wei, Yinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-4a76f0c6139421252e6ce83698fd1626253986309383297d40325abff0195da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino Acids - metabolism</topic><topic>Bacterial Outer Membrane Proteins - metabolism</topic><topic>Binding</topic><topic>Biochemistry</topic><topic>Biology</topic><topic>Conduction</topic><topic>Cross-Linking Reagents - pharmacology</topic><topic>Crosslinking</topic><topic>Cysteine - genetics</topic><topic>Dissociation</topic><topic>E coli</topic><topic>Efflux</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Fluorescence</topic><topic>Gene Knockout Techniques</topic><topic>In vivo methods and tests</topic><topic>Labeling</topic><topic>Machinery and equipment</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Microbial Sensitivity Tests</topic><topic>Migration</topic><topic>Models, Molecular</topic><topic>Multidrug Resistance-Associated Proteins - chemistry</topic><topic>Multidrug Resistance-Associated Proteins - metabolism</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation - genetics</topic><topic>Protein Binding</topic><topic>Protein interaction</topic><topic>Protein Multimerization - drug effects</topic><topic>Protein Structure, Secondary</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Protons</topic><topic>Studies</topic><topic>Substrate specificity</topic><topic>Substrate Specificity - drug effects</topic><topic>Substrates</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Wei</creatorcontrib><creatorcontrib>Zhong, Meng</creatorcontrib><creatorcontrib>Chai, Qian</creatorcontrib><creatorcontrib>Wang, Zhaoshuai</creatorcontrib><creatorcontrib>Yu, Linliang</creatorcontrib><creatorcontrib>Wei, Yinan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Wei</au><au>Zhong, Meng</au><au>Chai, Qian</au><au>Wang, Zhaoshuai</au><au>Yu, Linliang</au><au>Wei, Yinan</au><au>Cascales, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional relevance of AcrB Trimerization in pump assembly and substrate binding</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-14</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e89143</spage><epage>e89143</epage><pages>e89143-e89143</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>AcrB is a multidrug transporter in the inner membrane of Escherichia coli. It is an obligate homotrimer and forms a tripartite efflux complex with AcrA and TolC. AcrB is the engine of the efflux machinery and determines substrate specificity. Active efflux depends on several functional features including proton translocation across the inner membrane through a proton relay pathway in the transmembrane domain of AcrB; substrate binding and migration through the substrate translocation pathway; the interaction of AcrB with AcrA and TolC; and the formation of AcrB homotrimer. Here we investigated two aspects of the inter-correlation between these functional features, the dependence of AcrA-AcrB interaction on AcrB trimerization, and the reliance of substrate binding and penetration on protein-protein interaction. Interaction between AcrA and AcrB was investigated through chemical crosslinking, and a previously established in vivo fluorescent labeling method was used to probe substrate binding. Our data suggested that dissociation of the AcrB trimer drastically decreased its interaction with AcrA. In addition, while substrate binding with AcrB seemed to be irrelevant to the presence or absence of AcrA and TolC, the capability of trimerization and conduction of proton influx did affect substrate binding at selected sites along the substrate translocation pathway in AcrB.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24551234</pmid><doi>10.1371/journal.pone.0089143</doi><tpages>e89143</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-02, Vol.9 (2), p.e89143-e89143
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1498237519
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acids - metabolism
Bacterial Outer Membrane Proteins - metabolism
Binding
Biochemistry
Biology
Conduction
Cross-Linking Reagents - pharmacology
Crosslinking
Cysteine - genetics
Dissociation
E coli
Efflux
Escherichia coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Fluorescence
Gene Knockout Techniques
In vivo methods and tests
Labeling
Machinery and equipment
Membrane Transport Proteins - metabolism
Microbial Sensitivity Tests
Migration
Models, Molecular
Multidrug Resistance-Associated Proteins - chemistry
Multidrug Resistance-Associated Proteins - metabolism
Mutant Proteins - metabolism
Mutation - genetics
Protein Binding
Protein interaction
Protein Multimerization - drug effects
Protein Structure, Secondary
Protein-protein interactions
Proteins
Protons
Studies
Substrate specificity
Substrate Specificity - drug effects
Substrates
Translocation
title Functional relevance of AcrB Trimerization in pump assembly and substrate binding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20relevance%20of%20AcrB%20Trimerization%20in%20pump%20assembly%20and%20substrate%20binding&rft.jtitle=PloS%20one&rft.au=Lu,%20Wei&rft.date=2014-02-14&rft.volume=9&rft.issue=2&rft.spage=e89143&rft.epage=e89143&rft.pages=e89143-e89143&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0089143&rft_dat=%3Cgale_plos_%3EA478803629%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1498237519&rft_id=info:pmid/24551234&rft_galeid=A478803629&rft_doaj_id=oai_doaj_org_article_fc8deda759f74af9858fe35b8692607b&rfr_iscdi=true