Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images

Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of propertie...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-02, Vol.9 (2), p.e86481-e86481
Hauptverfasser: Gutmann, Michael U, Laparra, Valero, Hyvärinen, Aapo, Malo, Jesús
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e86481
container_issue 2
container_start_page e86481
container_title PloS one
container_volume 9
creator Gutmann, Michael U
Laparra, Valero
Hyvärinen, Aapo
Malo, Jesús
description Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.
doi_str_mv 10.1371/journal.pone.0086481
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1497406279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478805719</galeid><doaj_id>oai_doaj_org_article_212dbfcbaf8c409da8a274dccbfb0d8e</doaj_id><sourcerecordid>A478805719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-6b89b8defb1d90af76167406b09acdb9aaa354edded79216c7ce845515ae12a33</originalsourceid><addsrcrecordid>eNqNk0tr3DAQx01paR7tNyitoVDag7eSLetxKYTQx0Ig0LS9FTGWZFuL19pIdmi-feSuE9Ylh6KDxOg3f82MZpLkFUYrXDD8ceNG30O32rnerBDilHD8JDnGosgzmqPi6cH5KDkJYYNQWXBKnydHOSmLAhFxnPy-2sFgXaZa77bxpFLQsBsmW5_eWEhb27TGZ85r41MFveutgi5VznvT7TGIYdwGG1JXpz0Mo4_3dguNCS-SZzV0wbyc99Pk55fPP86_ZReXX9fnZxeZYiUfMlpxUXFt6gprgaBmFFNGEK2QAKUrAQBFSYzWRjORY6qYMpyUJS7B4ByK4jR5s9fddS7IuTJBYiImmZyJSKz3hHawkTsf4_O30oGVfw3ONxJ8TL8zMse5rmpVQc0VQUIDh5wRrVRVV0hzE7U-za-N1dZoZfohprwQXd70tpWNu5GFyHNWsijwfhbw7no0YZBbG5TpOuiNG2PcJUJUlJTQiL79B308u5lqICZg-9rFd9UkKs8I4xyVDE_U6hEqLm22VsU2qm20Lxw-LBwiM5g_QwNjCHJ99f3_2ctfS_bdAdsa6IY2uG6cuiksQbIHlXcheFM_FBkjOU3BfTXkNAVynoLo9vrwgx6c7tu-uAPrtATf</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1497406279</pqid></control><display><type>article</type><title>Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images</title><source>PLoS</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Gutmann, Michael U ; Laparra, Valero ; Hyvärinen, Aapo ; Malo, Jesús</creator><contributor>Osorio, Daniel</contributor><creatorcontrib>Gutmann, Michael U ; Laparra, Valero ; Hyvärinen, Aapo ; Malo, Jesús ; Osorio, Daniel</creatorcontrib><description>Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0086481</identifier><identifier>PMID: 24533049</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation ; Algorithms ; Analysis ; Artificial Intelligence ; Biology ; Chromatic adaptations ; Color ; Color Perception - physiology ; Computer Simulation ; Correlation ; Correlation analysis ; Datasets ; Habituation ; Habituation (learning) ; Humans ; Image Processing, Computer-Assisted ; Independent component analysis ; Information processing ; Information technology ; Information theory ; Laboratories ; Light ; Mathematics ; Models, Statistical ; Nervous system ; Neurosciences ; Neurosciences - methods ; Photic Stimulation - methods ; Probability ; Properties (attributes) ; Psychophysics ; Random variables ; Remote sensing ; Social and Behavioral Sciences ; Statistical analysis ; Statistical methods ; Statistics ; Visual cortex ; Visual Cortex - physiology ; Visual stimuli</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e86481-e86481</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Gutmann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Gutmann et al 2014 Gutmann et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-6b89b8defb1d90af76167406b09acdb9aaa354edded79216c7ce845515ae12a33</citedby><cites>FETCH-LOGICAL-c758t-6b89b8defb1d90af76167406b09acdb9aaa354edded79216c7ce845515ae12a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922757/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922757/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24533049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Osorio, Daniel</contributor><creatorcontrib>Gutmann, Michael U</creatorcontrib><creatorcontrib>Laparra, Valero</creatorcontrib><creatorcontrib>Hyvärinen, Aapo</creatorcontrib><creatorcontrib>Malo, Jesús</creatorcontrib><title>Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.</description><subject>Adaptation</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Biology</subject><subject>Chromatic adaptations</subject><subject>Color</subject><subject>Color Perception - physiology</subject><subject>Computer Simulation</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Datasets</subject><subject>Habituation</subject><subject>Habituation (learning)</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Independent component analysis</subject><subject>Information processing</subject><subject>Information technology</subject><subject>Information theory</subject><subject>Laboratories</subject><subject>Light</subject><subject>Mathematics</subject><subject>Models, Statistical</subject><subject>Nervous system</subject><subject>Neurosciences</subject><subject>Neurosciences - methods</subject><subject>Photic Stimulation - methods</subject><subject>Probability</subject><subject>Properties (attributes)</subject><subject>Psychophysics</subject><subject>Random variables</subject><subject>Remote sensing</subject><subject>Social and Behavioral Sciences</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Visual cortex</subject><subject>Visual Cortex - physiology</subject><subject>Visual stimuli</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tr3DAQx01paR7tNyitoVDag7eSLetxKYTQx0Ig0LS9FTGWZFuL19pIdmi-feSuE9Ylh6KDxOg3f82MZpLkFUYrXDD8ceNG30O32rnerBDilHD8JDnGosgzmqPi6cH5KDkJYYNQWXBKnydHOSmLAhFxnPy-2sFgXaZa77bxpFLQsBsmW5_eWEhb27TGZ85r41MFveutgi5VznvT7TGIYdwGG1JXpz0Mo4_3dguNCS-SZzV0wbyc99Pk55fPP86_ZReXX9fnZxeZYiUfMlpxUXFt6gprgaBmFFNGEK2QAKUrAQBFSYzWRjORY6qYMpyUJS7B4ByK4jR5s9fddS7IuTJBYiImmZyJSKz3hHawkTsf4_O30oGVfw3ONxJ8TL8zMse5rmpVQc0VQUIDh5wRrVRVV0hzE7U-za-N1dZoZfohprwQXd70tpWNu5GFyHNWsijwfhbw7no0YZBbG5TpOuiNG2PcJUJUlJTQiL79B308u5lqICZg-9rFd9UkKs8I4xyVDE_U6hEqLm22VsU2qm20Lxw-LBwiM5g_QwNjCHJ99f3_2ctfS_bdAdsa6IY2uG6cuiksQbIHlXcheFM_FBkjOU3BfTXkNAVynoLo9vrwgx6c7tu-uAPrtATf</recordid><startdate>20140212</startdate><enddate>20140212</enddate><creator>Gutmann, Michael U</creator><creator>Laparra, Valero</creator><creator>Hyvärinen, Aapo</creator><creator>Malo, Jesús</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140212</creationdate><title>Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images</title><author>Gutmann, Michael U ; Laparra, Valero ; Hyvärinen, Aapo ; Malo, Jesús</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-6b89b8defb1d90af76167406b09acdb9aaa354edded79216c7ce845515ae12a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adaptation</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Biology</topic><topic>Chromatic adaptations</topic><topic>Color</topic><topic>Color Perception - physiology</topic><topic>Computer Simulation</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Datasets</topic><topic>Habituation</topic><topic>Habituation (learning)</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Independent component analysis</topic><topic>Information processing</topic><topic>Information technology</topic><topic>Information theory</topic><topic>Laboratories</topic><topic>Light</topic><topic>Mathematics</topic><topic>Models, Statistical</topic><topic>Nervous system</topic><topic>Neurosciences</topic><topic>Neurosciences - methods</topic><topic>Photic Stimulation - methods</topic><topic>Probability</topic><topic>Properties (attributes)</topic><topic>Psychophysics</topic><topic>Random variables</topic><topic>Remote sensing</topic><topic>Social and Behavioral Sciences</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Visual cortex</topic><topic>Visual Cortex - physiology</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gutmann, Michael U</creatorcontrib><creatorcontrib>Laparra, Valero</creatorcontrib><creatorcontrib>Hyvärinen, Aapo</creatorcontrib><creatorcontrib>Malo, Jesús</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gutmann, Michael U</au><au>Laparra, Valero</au><au>Hyvärinen, Aapo</au><au>Malo, Jesús</au><au>Osorio, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-12</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e86481</spage><epage>e86481</epage><pages>e86481-e86481</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24533049</pmid><doi>10.1371/journal.pone.0086481</doi><tpages>e86481</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-02, Vol.9 (2), p.e86481-e86481
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1497406279
source PLoS; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Adaptation
Algorithms
Analysis
Artificial Intelligence
Biology
Chromatic adaptations
Color
Color Perception - physiology
Computer Simulation
Correlation
Correlation analysis
Datasets
Habituation
Habituation (learning)
Humans
Image Processing, Computer-Assisted
Independent component analysis
Information processing
Information technology
Information theory
Laboratories
Light
Mathematics
Models, Statistical
Nervous system
Neurosciences
Neurosciences - methods
Photic Stimulation - methods
Probability
Properties (attributes)
Psychophysics
Random variables
Remote sensing
Social and Behavioral Sciences
Statistical analysis
Statistical methods
Statistics
Visual cortex
Visual Cortex - physiology
Visual stimuli
title Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A07%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spatio-chromatic%20adaptation%20via%20higher-order%20canonical%20correlation%20analysis%20of%20natural%20images&rft.jtitle=PloS%20one&rft.au=Gutmann,%20Michael%20U&rft.date=2014-02-12&rft.volume=9&rft.issue=2&rft.spage=e86481&rft.epage=e86481&rft.pages=e86481-e86481&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0086481&rft_dat=%3Cgale_plos_%3EA478805719%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1497406279&rft_id=info:pmid/24533049&rft_galeid=A478805719&rft_doaj_id=oai_doaj_org_article_212dbfcbaf8c409da8a274dccbfb0d8e&rfr_iscdi=true