The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation

RDM1 (RNA-DIRECTED DNA METHYLATION1) is a small plant-specific protein required for RNA-directed DNA methylation (RdDM). RDM1 interacts with RNA polymerase II (Pol II), ARGONAUTE4 (AGO4), and the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) and binds to methylated singl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-02, Vol.9 (2), p.e88190-e88190
Hauptverfasser: Sasaki, Taku, Lorković, Zdravko J, Liang, Shih-Chieh, Matzke, Antonius J M, Matzke, Marjori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e88190
container_issue 2
container_start_page e88190
container_title PloS one
container_volume 9
creator Sasaki, Taku
Lorković, Zdravko J
Liang, Shih-Chieh
Matzke, Antonius J M
Matzke, Marjori
description RDM1 (RNA-DIRECTED DNA METHYLATION1) is a small plant-specific protein required for RNA-directed DNA methylation (RdDM). RDM1 interacts with RNA polymerase II (Pol II), ARGONAUTE4 (AGO4), and the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) and binds to methylated single stranded DNA. As the only protein identified so far that interacts directly with DRM2, RDM1 plays a pivotal role in the RdDM mechanism by linking the de novo DNA methyltransferase activity to AGO4, which binds short interfering RNAs (siRNAs) that presumably base-pair with Pol II or Pol V scaffold transcripts synthesized at target loci. RDM1 also acts together with the chromatin remodeler DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1 (DRD1) and the structural-maintenance-of-chromosomes solo hinge protein DEFECTIVE IN MERISTEM SILENCING3 (DMS3) to form the DDR complex, which facilitates synthesis of Pol V scaffold transcripts. The manner in which RDM1 acts in both the DDR complex and as a factor bridging DRM2 and AGO4 remains unclear. RDM1 contains no known protein domains but a prior structural analysis suggested distinct regions that create a hydrophobic pocket and promote homodimer formation, respectively. We have tested several mutated forms of RDM1 altered in the predicted pocket and dimerization regions for their ability to complement defects in RdDM and transcriptional gene silencing, support synthesis of Pol V transcripts, form homodimers, and interact with DMS3. Our results indicate that the ability to form homodimers is essential for RDM1 to function fully in the RdDM pathway and may be particularly important during the de novo methylation step.
doi_str_mv 10.1371/journal.pone.0088190
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1496702392</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478831803</galeid><doaj_id>oai_doaj_org_article_9d48a99b20944868959a219cc5bf9610</doaj_id><sourcerecordid>A478831803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-cc57e6ca08e721eb464ae33496e173a166cacb7ec6c418df1e6c0d65ec3a0bae3</originalsourceid><addsrcrecordid>eNqNk99v0zAQxyMEYmPwHyCIhITgocWOXcd-mVRt_Kg0NqkMXo3jXFpXTlzsBNH_HqfNpgbtAfnB1t3nvmef75LkJUZTTHL8YeM63yg73boGpghxjgV6lJxiQbIJyxB5fHQ-SZ6FsEFoRjhjT5OTjFLBKWGnyc_bNaSqMNa0u7R1aeV8na5d7UpTgw-pCSmEAE1rlO2d6fLyK96DXaNb45rUNOnyej4pjQfdQpleXs_TGtr1zqre_zx5Uikb4MWwnyXfP328vfgyubr5vLiYX010PuPtROtZDkwrxCHPMBSUUQWEUMEA50RhFn26yEEzTTEvKxxhVLIZaKJQEdGz5PVBd2tdkENxgsRRIUcZEVkkFgeidGojt97Uyu-kU0buDc6vpPKt0RakKClXQhQZEpRyxsVMqAyLeMmiEgyjqHU-ZOuKGkodC-SVHYmOPY1Zy5X7LYnAGWYkCrwbBLz71UFoZW2CBmtVA67b3zuSNMt5RN_8gz78uoFaqfgA01Qu5tW9qJzTnHOCOerTTh-g4iqhNjp2UmWifRTwfhQQmRb-tCvVhSAX35b_z978GLNvj9g1KNuug7Nd3zJhDNIDqL0LwUN1X2SMZD8Id9WQ_SDIYRBi2KvjD7oPuut88he0JQIr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1496702392</pqid></control><display><type>article</type><title>The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sasaki, Taku ; Lorković, Zdravko J ; Liang, Shih-Chieh ; Matzke, Antonius J M ; Matzke, Marjori</creator><contributor>Meyer, Peter</contributor><creatorcontrib>Sasaki, Taku ; Lorković, Zdravko J ; Liang, Shih-Chieh ; Matzke, Antonius J M ; Matzke, Marjori ; Meyer, Peter</creatorcontrib><description>RDM1 (RNA-DIRECTED DNA METHYLATION1) is a small plant-specific protein required for RNA-directed DNA methylation (RdDM). RDM1 interacts with RNA polymerase II (Pol II), ARGONAUTE4 (AGO4), and the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) and binds to methylated single stranded DNA. As the only protein identified so far that interacts directly with DRM2, RDM1 plays a pivotal role in the RdDM mechanism by linking the de novo DNA methyltransferase activity to AGO4, which binds short interfering RNAs (siRNAs) that presumably base-pair with Pol II or Pol V scaffold transcripts synthesized at target loci. RDM1 also acts together with the chromatin remodeler DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1 (DRD1) and the structural-maintenance-of-chromosomes solo hinge protein DEFECTIVE IN MERISTEM SILENCING3 (DMS3) to form the DDR complex, which facilitates synthesis of Pol V scaffold transcripts. The manner in which RDM1 acts in both the DDR complex and as a factor bridging DRM2 and AGO4 remains unclear. RDM1 contains no known protein domains but a prior structural analysis suggested distinct regions that create a hydrophobic pocket and promote homodimer formation, respectively. We have tested several mutated forms of RDM1 altered in the predicted pocket and dimerization regions for their ability to complement defects in RdDM and transcriptional gene silencing, support synthesis of Pol V transcripts, form homodimers, and interact with DMS3. Our results indicate that the ability to form homodimers is essential for RDM1 to function fully in the RdDM pathway and may be particularly important during the de novo methylation step.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0088190</identifier><identifier>PMID: 24498436</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Analysis ; Arabidopsis ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis - growth &amp; development ; Arabidopsis Proteins - antagonists &amp; inhibitors ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Arabidopsis thaliana ; Argonaute Proteins - genetics ; Argonaute Proteins - metabolism ; Auditory defects ; Biology ; Blotting, Western ; Chromatin ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; Chromosomes ; Deoxyribonucleic acid ; Dimerization ; DNA ; DNA Methylation ; DNA methyltransferase ; DNA, Plant - genetics ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; DNA-directed RNA polymerase ; DNA-Directed RNA Polymerases - antagonists &amp; inhibitors ; DNA-Directed RNA Polymerases - genetics ; Dopamine D1 receptors ; Dopamine receptors ; Gene Silencing ; Genes ; Genetic engineering ; Genomes ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Hydrophobicity ; Methylation ; Mutation ; Plant biology ; Protein Multimerization ; Proteins ; Real-Time Polymerase Chain Reaction ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonucleic acid ; RNA ; RNA polymerase II ; RNA Polymerase II - antagonists &amp; inhibitors ; RNA Polymerase II - genetics ; RNA Polymerase II - metabolism ; RNA, Messenger - genetics ; RNA, Plant - genetics ; RNA, Small Interfering - genetics ; RNA-directed RNA polymerase ; siRNA ; Structural analysis ; Synthesis ; Transcription (Genetics)</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e88190-e88190</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Sasaki et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Sasaki et al 2014 Sasaki et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-cc57e6ca08e721eb464ae33496e173a166cacb7ec6c418df1e6c0d65ec3a0bae3</citedby><cites>FETCH-LOGICAL-c758t-cc57e6ca08e721eb464ae33496e173a166cacb7ec6c418df1e6c0d65ec3a0bae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912163/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912163/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24498436$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Meyer, Peter</contributor><creatorcontrib>Sasaki, Taku</creatorcontrib><creatorcontrib>Lorković, Zdravko J</creatorcontrib><creatorcontrib>Liang, Shih-Chieh</creatorcontrib><creatorcontrib>Matzke, Antonius J M</creatorcontrib><creatorcontrib>Matzke, Marjori</creatorcontrib><title>The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>RDM1 (RNA-DIRECTED DNA METHYLATION1) is a small plant-specific protein required for RNA-directed DNA methylation (RdDM). RDM1 interacts with RNA polymerase II (Pol II), ARGONAUTE4 (AGO4), and the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) and binds to methylated single stranded DNA. As the only protein identified so far that interacts directly with DRM2, RDM1 plays a pivotal role in the RdDM mechanism by linking the de novo DNA methyltransferase activity to AGO4, which binds short interfering RNAs (siRNAs) that presumably base-pair with Pol II or Pol V scaffold transcripts synthesized at target loci. RDM1 also acts together with the chromatin remodeler DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1 (DRD1) and the structural-maintenance-of-chromosomes solo hinge protein DEFECTIVE IN MERISTEM SILENCING3 (DMS3) to form the DDR complex, which facilitates synthesis of Pol V scaffold transcripts. The manner in which RDM1 acts in both the DDR complex and as a factor bridging DRM2 and AGO4 remains unclear. RDM1 contains no known protein domains but a prior structural analysis suggested distinct regions that create a hydrophobic pocket and promote homodimer formation, respectively. We have tested several mutated forms of RDM1 altered in the predicted pocket and dimerization regions for their ability to complement defects in RdDM and transcriptional gene silencing, support synthesis of Pol V transcripts, form homodimers, and interact with DMS3. Our results indicate that the ability to form homodimers is essential for RDM1 to function fully in the RdDM pathway and may be particularly important during the de novo methylation step.</description><subject>Amino acids</subject><subject>Analysis</subject><subject>Arabidopsis</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - growth &amp; development</subject><subject>Arabidopsis Proteins - antagonists &amp; inhibitors</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Arabidopsis thaliana</subject><subject>Argonaute Proteins - genetics</subject><subject>Argonaute Proteins - metabolism</subject><subject>Auditory defects</subject><subject>Biology</subject><subject>Blotting, Western</subject><subject>Chromatin</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>Dimerization</subject><subject>DNA</subject><subject>DNA Methylation</subject><subject>DNA methyltransferase</subject><subject>DNA, Plant - genetics</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>DNA-directed RNA polymerase</subject><subject>DNA-Directed RNA Polymerases - antagonists &amp; inhibitors</subject><subject>DNA-Directed RNA Polymerases - genetics</subject><subject>Dopamine D1 receptors</subject><subject>Dopamine receptors</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hydrophobicity</subject><subject>Methylation</subject><subject>Mutation</subject><subject>Plant biology</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase II</subject><subject>RNA Polymerase II - antagonists &amp; inhibitors</subject><subject>RNA Polymerase II - genetics</subject><subject>RNA Polymerase II - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA-directed RNA polymerase</subject><subject>siRNA</subject><subject>Structural analysis</subject><subject>Synthesis</subject><subject>Transcription (Genetics)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99v0zAQxyMEYmPwHyCIhITgocWOXcd-mVRt_Kg0NqkMXo3jXFpXTlzsBNH_HqfNpgbtAfnB1t3nvmef75LkJUZTTHL8YeM63yg73boGpghxjgV6lJxiQbIJyxB5fHQ-SZ6FsEFoRjhjT5OTjFLBKWGnyc_bNaSqMNa0u7R1aeV8na5d7UpTgw-pCSmEAE1rlO2d6fLyK96DXaNb45rUNOnyej4pjQfdQpleXs_TGtr1zqre_zx5Uikb4MWwnyXfP328vfgyubr5vLiYX010PuPtROtZDkwrxCHPMBSUUQWEUMEA50RhFn26yEEzTTEvKxxhVLIZaKJQEdGz5PVBd2tdkENxgsRRIUcZEVkkFgeidGojt97Uyu-kU0buDc6vpPKt0RakKClXQhQZEpRyxsVMqAyLeMmiEgyjqHU-ZOuKGkodC-SVHYmOPY1Zy5X7LYnAGWYkCrwbBLz71UFoZW2CBmtVA67b3zuSNMt5RN_8gz78uoFaqfgA01Qu5tW9qJzTnHOCOerTTh-g4iqhNjp2UmWifRTwfhQQmRb-tCvVhSAX35b_z978GLNvj9g1KNuug7Nd3zJhDNIDqL0LwUN1X2SMZD8Id9WQ_SDIYRBi2KvjD7oPuut88he0JQIr</recordid><startdate>20140203</startdate><enddate>20140203</enddate><creator>Sasaki, Taku</creator><creator>Lorković, Zdravko J</creator><creator>Liang, Shih-Chieh</creator><creator>Matzke, Antonius J M</creator><creator>Matzke, Marjori</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140203</creationdate><title>The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation</title><author>Sasaki, Taku ; Lorković, Zdravko J ; Liang, Shih-Chieh ; Matzke, Antonius J M ; Matzke, Marjori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-cc57e6ca08e721eb464ae33496e173a166cacb7ec6c418df1e6c0d65ec3a0bae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amino acids</topic><topic>Analysis</topic><topic>Arabidopsis</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - growth &amp; development</topic><topic>Arabidopsis Proteins - antagonists &amp; inhibitors</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Arabidopsis thaliana</topic><topic>Argonaute Proteins - genetics</topic><topic>Argonaute Proteins - metabolism</topic><topic>Auditory defects</topic><topic>Biology</topic><topic>Blotting, Western</topic><topic>Chromatin</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>Dimerization</topic><topic>DNA</topic><topic>DNA Methylation</topic><topic>DNA methyltransferase</topic><topic>DNA, Plant - genetics</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>DNA-directed RNA polymerase</topic><topic>DNA-Directed RNA Polymerases - antagonists &amp; inhibitors</topic><topic>DNA-Directed RNA Polymerases - genetics</topic><topic>Dopamine D1 receptors</topic><topic>Dopamine receptors</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hydrophobicity</topic><topic>Methylation</topic><topic>Mutation</topic><topic>Plant biology</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase II</topic><topic>RNA Polymerase II - antagonists &amp; inhibitors</topic><topic>RNA Polymerase II - genetics</topic><topic>RNA Polymerase II - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA-directed RNA polymerase</topic><topic>siRNA</topic><topic>Structural analysis</topic><topic>Synthesis</topic><topic>Transcription (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasaki, Taku</creatorcontrib><creatorcontrib>Lorković, Zdravko J</creatorcontrib><creatorcontrib>Liang, Shih-Chieh</creatorcontrib><creatorcontrib>Matzke, Antonius J M</creatorcontrib><creatorcontrib>Matzke, Marjori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sasaki, Taku</au><au>Lorković, Zdravko J</au><au>Liang, Shih-Chieh</au><au>Matzke, Antonius J M</au><au>Matzke, Marjori</au><au>Meyer, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-03</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e88190</spage><epage>e88190</epage><pages>e88190-e88190</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>RDM1 (RNA-DIRECTED DNA METHYLATION1) is a small plant-specific protein required for RNA-directed DNA methylation (RdDM). RDM1 interacts with RNA polymerase II (Pol II), ARGONAUTE4 (AGO4), and the de novo DNA methyltransferase DOMAINS REARRANGED METHYLTRANSFERASE2 (DRM2) and binds to methylated single stranded DNA. As the only protein identified so far that interacts directly with DRM2, RDM1 plays a pivotal role in the RdDM mechanism by linking the de novo DNA methyltransferase activity to AGO4, which binds short interfering RNAs (siRNAs) that presumably base-pair with Pol II or Pol V scaffold transcripts synthesized at target loci. RDM1 also acts together with the chromatin remodeler DEFECTIVE IN RNA-DIRECTED DNA METHYLATION1 (DRD1) and the structural-maintenance-of-chromosomes solo hinge protein DEFECTIVE IN MERISTEM SILENCING3 (DMS3) to form the DDR complex, which facilitates synthesis of Pol V scaffold transcripts. The manner in which RDM1 acts in both the DDR complex and as a factor bridging DRM2 and AGO4 remains unclear. RDM1 contains no known protein domains but a prior structural analysis suggested distinct regions that create a hydrophobic pocket and promote homodimer formation, respectively. We have tested several mutated forms of RDM1 altered in the predicted pocket and dimerization regions for their ability to complement defects in RdDM and transcriptional gene silencing, support synthesis of Pol V transcripts, form homodimers, and interact with DMS3. Our results indicate that the ability to form homodimers is essential for RDM1 to function fully in the RdDM pathway and may be particularly important during the de novo methylation step.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24498436</pmid><doi>10.1371/journal.pone.0088190</doi><tpages>e88190</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-02, Vol.9 (2), p.e88190-e88190
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1496702392
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino acids
Analysis
Arabidopsis
Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis Proteins - antagonists & inhibitors
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Argonaute Proteins - genetics
Argonaute Proteins - metabolism
Auditory defects
Biology
Blotting, Western
Chromatin
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
Chromosomes
Deoxyribonucleic acid
Dimerization
DNA
DNA Methylation
DNA methyltransferase
DNA, Plant - genetics
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
DNA-directed RNA polymerase
DNA-Directed RNA Polymerases - antagonists & inhibitors
DNA-Directed RNA Polymerases - genetics
Dopamine D1 receptors
Dopamine receptors
Gene Silencing
Genes
Genetic engineering
Genomes
Green Fluorescent Proteins - genetics
Green Fluorescent Proteins - metabolism
Hydrophobicity
Methylation
Mutation
Plant biology
Protein Multimerization
Proteins
Real-Time Polymerase Chain Reaction
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleic acid
RNA
RNA polymerase II
RNA Polymerase II - antagonists & inhibitors
RNA Polymerase II - genetics
RNA Polymerase II - metabolism
RNA, Messenger - genetics
RNA, Plant - genetics
RNA, Small Interfering - genetics
RNA-directed RNA polymerase
siRNA
Structural analysis
Synthesis
Transcription (Genetics)
title The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T02%3A06%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ability%20to%20form%20homodimers%20is%20essential%20for%20RDM1%20to%20function%20in%20RNA-directed%20DNA%20methylation&rft.jtitle=PloS%20one&rft.au=Sasaki,%20Taku&rft.date=2014-02-03&rft.volume=9&rft.issue=2&rft.spage=e88190&rft.epage=e88190&rft.pages=e88190-e88190&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0088190&rft_dat=%3Cgale_plos_%3EA478831803%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1496702392&rft_id=info:pmid/24498436&rft_galeid=A478831803&rft_doaj_id=oai_doaj_org_article_9d48a99b20944868959a219cc5bf9610&rfr_iscdi=true