Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit

Multispectral imaging with 19 wavelengths in the range of 405-970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-02, Vol.9 (2), p.e87818-e87818
Hauptverfasser: Liu, Changhong, Liu, Wei, Lu, Xuzhong, Ma, Fei, Chen, Wei, Yang, Jianbo, Zheng, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e87818
container_issue 2
container_start_page e87818
container_title PloS one
container_volume 9
creator Liu, Changhong
Liu, Wei
Lu, Xuzhong
Ma, Fei
Chen, Wei
Yang, Jianbo
Zheng, Lei
description Multispectral imaging with 19 wavelengths in the range of 405-970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit.
doi_str_mv 10.1371/journal.pone.0087818
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1494399985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478831286</galeid><doaj_id>oai_doaj_org_article_1e33f221cdad4f13bb33019e945cb008</doaj_id><sourcerecordid>A478831286</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-30055272aa6287842a723a971c2852d86e3f8fdbfb634f3f392e703657389a453</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QDgujFjM1H2_RGGBY_BhYW_LoNaXvSyZo23SRV59-b7nSXqeyF5CKH5Dlvct7kJMlznK4xLfC7Kzu6Xpr1YHtYpykvOOYPklNcUrLKSUofHsUnyRPvr9I0ozzPHycnhGUxxsVp8nMzDEbXMmjbI6tQN5qg_QB1cNIg3clW9y0KFjUQwHW6B3Q9SqPDHskQnK7GAB7JvkFOD9CD98gH2QLSfQyc_F2Bc3uk3KjD0-SRksbDs3k-S75__PDt_PPq4vLT9nxzsaqLjIcVjffMSEGkzEmsihFZECrLAteEZ6ThOVDFVVOpKqdMUUVLAkVK86ygvJQso2fJy4PuYKwXs09eYFYyWpYln4jtgWisvBKDi3W6vbBSi5sF61ohXdC1AYGBUkUIrhvZMIVpVVGa4hJKltVVtD1qvZ9PG6sOmhr6ybqF6HKn1zvR2l-ClvEdUxYF3swCzl6P4IPotK_BGNmDHW_uHUnGKI7oq3_Q-6ubqVbGAnSvbDy3nkTFhhWcU0x4Hqn1PVQcDXS6jp9K6bi-SHi7SIhMgD-hlaP3Yvv1y_-zlz-W7OsjdgfShJ23Zpy-pF-C7ADWznrvQN2ZjFMx9cStG2LqCTH3REx7cfxAd0m3TUD_Au95B1I</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494399985</pqid></control><display><type>article</type><title>Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liu, Changhong ; Liu, Wei ; Lu, Xuzhong ; Ma, Fei ; Chen, Wei ; Yang, Jianbo ; Zheng, Lei</creator><contributor>Amancio, Sara</contributor><creatorcontrib>Liu, Changhong ; Liu, Wei ; Lu, Xuzhong ; Ma, Fei ; Chen, Wei ; Yang, Jianbo ; Zheng, Lei ; Amancio, Sara</creatorcontrib><description>Multispectral imaging with 19 wavelengths in the range of 405-970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0087818</identifier><identifier>PMID: 24505317</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Artificial neural networks ; Back propagation networks ; Biology ; Biotechnology ; Classification ; Correlation coefficient ; Correlation coefficients ; Engineering ; Firmness ; Food Inspection - methods ; Food Quality ; Fragaria ; Fruit - chemistry ; Fruit - standards ; Fruits ; Horticulture ; Humans ; Imaging ; Imaging systems ; Laboratories ; Mathematical models ; Model accuracy ; Neural networks ; Nondestructive testing ; Principal components analysis ; Quality ; Quality management ; Solids ; Support vector machines ; Technology ; Vegetables ; Vision systems ; Wavelengths</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e87818-e87818</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Liu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/legalcode (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Liu et al 2014 Liu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-30055272aa6287842a723a971c2852d86e3f8fdbfb634f3f392e703657389a453</citedby><cites>FETCH-LOGICAL-c758t-30055272aa6287842a723a971c2852d86e3f8fdbfb634f3f392e703657389a453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913704/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913704/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24505317$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Amancio, Sara</contributor><creatorcontrib>Liu, Changhong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lu, Xuzhong</creatorcontrib><creatorcontrib>Ma, Fei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Yang, Jianbo</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><title>Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Multispectral imaging with 19 wavelengths in the range of 405-970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit.</description><subject>Agriculture</subject><subject>Artificial neural networks</subject><subject>Back propagation networks</subject><subject>Biology</subject><subject>Biotechnology</subject><subject>Classification</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Engineering</subject><subject>Firmness</subject><subject>Food Inspection - methods</subject><subject>Food Quality</subject><subject>Fragaria</subject><subject>Fruit - chemistry</subject><subject>Fruit - standards</subject><subject>Fruits</subject><subject>Horticulture</subject><subject>Humans</subject><subject>Imaging</subject><subject>Imaging systems</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Model accuracy</subject><subject>Neural networks</subject><subject>Nondestructive testing</subject><subject>Principal components analysis</subject><subject>Quality</subject><subject>Quality management</subject><subject>Solids</subject><subject>Support vector machines</subject><subject>Technology</subject><subject>Vegetables</subject><subject>Vision systems</subject><subject>Wavelengths</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QDgujFjM1H2_RGGBY_BhYW_LoNaXvSyZo23SRV59-b7nSXqeyF5CKH5Dlvct7kJMlznK4xLfC7Kzu6Xpr1YHtYpykvOOYPklNcUrLKSUofHsUnyRPvr9I0ozzPHycnhGUxxsVp8nMzDEbXMmjbI6tQN5qg_QB1cNIg3clW9y0KFjUQwHW6B3Q9SqPDHskQnK7GAB7JvkFOD9CD98gH2QLSfQyc_F2Bc3uk3KjD0-SRksbDs3k-S75__PDt_PPq4vLT9nxzsaqLjIcVjffMSEGkzEmsihFZECrLAteEZ6ThOVDFVVOpKqdMUUVLAkVK86ygvJQso2fJy4PuYKwXs09eYFYyWpYln4jtgWisvBKDi3W6vbBSi5sF61ohXdC1AYGBUkUIrhvZMIVpVVGa4hJKltVVtD1qvZ9PG6sOmhr6ybqF6HKn1zvR2l-ClvEdUxYF3swCzl6P4IPotK_BGNmDHW_uHUnGKI7oq3_Q-6ubqVbGAnSvbDy3nkTFhhWcU0x4Hqn1PVQcDXS6jp9K6bi-SHi7SIhMgD-hlaP3Yvv1y_-zlz-W7OsjdgfShJ23Zpy-pF-C7ADWznrvQN2ZjFMx9cStG2LqCTH3REx7cfxAd0m3TUD_Au95B1I</recordid><startdate>20140204</startdate><enddate>20140204</enddate><creator>Liu, Changhong</creator><creator>Liu, Wei</creator><creator>Lu, Xuzhong</creator><creator>Ma, Fei</creator><creator>Chen, Wei</creator><creator>Yang, Jianbo</creator><creator>Zheng, Lei</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140204</creationdate><title>Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit</title><author>Liu, Changhong ; Liu, Wei ; Lu, Xuzhong ; Ma, Fei ; Chen, Wei ; Yang, Jianbo ; Zheng, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-30055272aa6287842a723a971c2852d86e3f8fdbfb634f3f392e703657389a453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture</topic><topic>Artificial neural networks</topic><topic>Back propagation networks</topic><topic>Biology</topic><topic>Biotechnology</topic><topic>Classification</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Engineering</topic><topic>Firmness</topic><topic>Food Inspection - methods</topic><topic>Food Quality</topic><topic>Fragaria</topic><topic>Fruit - chemistry</topic><topic>Fruit - standards</topic><topic>Fruits</topic><topic>Horticulture</topic><topic>Humans</topic><topic>Imaging</topic><topic>Imaging systems</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Model accuracy</topic><topic>Neural networks</topic><topic>Nondestructive testing</topic><topic>Principal components analysis</topic><topic>Quality</topic><topic>Quality management</topic><topic>Solids</topic><topic>Support vector machines</topic><topic>Technology</topic><topic>Vegetables</topic><topic>Vision systems</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Changhong</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Lu, Xuzhong</creatorcontrib><creatorcontrib>Ma, Fei</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Yang, Jianbo</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Changhong</au><au>Liu, Wei</au><au>Lu, Xuzhong</au><au>Ma, Fei</au><au>Chen, Wei</au><au>Yang, Jianbo</au><au>Zheng, Lei</au><au>Amancio, Sara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-04</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e87818</spage><epage>e87818</epage><pages>e87818-e87818</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Multispectral imaging with 19 wavelengths in the range of 405-970 nm has been evaluated for nondestructive determination of firmness, total soluble solids (TSS) content and ripeness stage in strawberry fruit. Several analysis approaches, including partial least squares (PLS), support vector machine (SVM) and back propagation neural network (BPNN), were applied to develop theoretical models for predicting the firmness and TSS of intact strawberry fruit. Compared with PLS and SVM, BPNN considerably improved the performance of multispectral imaging for predicting firmness and total soluble solids content with the correlation coefficient (r) of 0.94 and 0.83, SEP of 0.375 and 0.573, and bias of 0.035 and 0.056, respectively. Subsequently, the ability of multispectral imaging technology to classify fruit based on ripeness stage was tested using SVM and principal component analysis-back propagation neural network (PCA-BPNN) models. The higher classification accuracy of 100% was achieved using SVM model. Moreover, the results of all these models demonstrated that the VIS parts of the spectra were the main contributor to the determination of firmness, TSS content estimation and classification of ripeness stage in strawberry fruit. These results suggest that multispectral imaging, together with suitable analysis model, is a promising technology for rapid estimation of quality attributes and classification of ripeness stage in strawberry fruit.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24505317</pmid><doi>10.1371/journal.pone.0087818</doi><tpages>e87818</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-02, Vol.9 (2), p.e87818-e87818
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1494399985
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Agriculture
Artificial neural networks
Back propagation networks
Biology
Biotechnology
Classification
Correlation coefficient
Correlation coefficients
Engineering
Firmness
Food Inspection - methods
Food Quality
Fragaria
Fruit - chemistry
Fruit - standards
Fruits
Horticulture
Humans
Imaging
Imaging systems
Laboratories
Mathematical models
Model accuracy
Neural networks
Nondestructive testing
Principal components analysis
Quality
Quality management
Solids
Support vector machines
Technology
Vegetables
Vision systems
Wavelengths
title Application of multispectral imaging to determine quality attributes and ripeness stage in strawberry fruit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A02%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20multispectral%20imaging%20to%20determine%20quality%20attributes%20and%20ripeness%20stage%20in%20strawberry%20fruit&rft.jtitle=PloS%20one&rft.au=Liu,%20Changhong&rft.date=2014-02-04&rft.volume=9&rft.issue=2&rft.spage=e87818&rft.epage=e87818&rft.pages=e87818-e87818&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0087818&rft_dat=%3Cgale_plos_%3EA478831286%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1494399985&rft_id=info:pmid/24505317&rft_galeid=A478831286&rft_doaj_id=oai_doaj_org_article_1e33f221cdad4f13bb33019e945cb008&rfr_iscdi=true