Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium
Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules. Caveolin-1(null) mice have marked metabolic abnormalities, yet the underlying molecular mechanisms are incompletely understood. We found the redox stress plasma biomarker plasma 8-isoprostane was elevated...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-02, Vol.9 (2), p.e87871 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | e87871 |
container_title | PloS one |
container_volume | 9 |
creator | Shiroto, Takashi Romero, Natalia Sugiyama, Toru Sartoretto, Juliano L Kalwa, Hermann Yan, Zhonghua Shimokawa, Hiroaki Michel, Thomas |
description | Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules. Caveolin-1(null) mice have marked metabolic abnormalities, yet the underlying molecular mechanisms are incompletely understood. We found the redox stress plasma biomarker plasma 8-isoprostane was elevated in caveolin-1(null) mice, and discovered that siRNA-mediated caveolin-1 knockdown in endothelial cells promoted significant increases in intracellular H₂O₂. Mitochondrial ROS production was increased in endothelial cells after caveolin-1 knockdown; 2-deoxy-D-glucose attenuated this increase, implicating caveolin-1 in control of glycolytic pathways. We performed unbiased metabolomic characterizations of endothelial cell lysates following caveolin-1 knockdown, and discovered strikingly increased levels (up to 30-fold) of cellular dipeptides, consistent with autophagy activation. Metabolomic analyses revealed that caveolin-1 knockdown led to a decrease in glycolytic intermediates, accompanied by an increase in fatty acids, suggesting a metabolic switch. Taken together, these results establish that caveolin-1 plays a central role in regulation of oxidative stress, metabolic switching, and autophagy in the endothelium, and may represent a critical target in cardiovascular diseases. |
doi_str_mv | 10.1371/journal.pone.0087871 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1494057801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478831924</galeid><doaj_id>oai_doaj_org_article_e1d9f2df4a854e16afe15ea7d3de69fc</doaj_id><sourcerecordid>A478831924</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-af0596ec99f8f9a0b31b730a7b6e55f68a376a8fcf4bb9172e8922064b2fa5d03</originalsourceid><addsrcrecordid>eNqNkm1rFDEUhQdRbK3-A9GAIAjdNZnMS_JFKIsvhULBt6_hTuZmN8tMsk0ya_vvTd1t6YKC5EPCzXNOwuEUxUtG54y37P3aT8HBMN94h3NKRSta9qg4ZpKXs6ak_PGD81HxLMY1pTUXTfO0OCqrSgou6uMiLWCLfrBuxoiNBIgONlkNA-kxYRitA5eINwSm5DcrWN6ckhETdFmjSfxlk15Ztzwl4Hrir20PyW6RxBQwRmId2ULU0wCBoOt9WuFgp_F58cTAEPHFfj8pfnz6-H3xZXZx-fl8cXYx020t0gwMrWWDWkojjATacda1nELbNVjXphHA2waE0abqOsnaEoUsS9pUXWmg7ik_KV7vfDeDj2ofWFSskhWtW0FZJs53RO9hrTbBjhBulAer_gx8WCoIOY8BFbJemrI3FYi6QtaAQVYjtD3vsZFGZ68P-9embsReo0sBhgPTwxtnV2rpt4pLVrJSZoM3e4PgryaM6R9f3lNLyL-yzvhspkcbtTqrWiE4k2WVqflfqLx6HK3OlTE2zw8E7w4EmUl4nZYwxajOv339f_by5yH79gG7QhjSKvphSta7eAhWO1AHH2NAc58co-q28XdpqNvGq33js-zVw9TvRXcV578BXsn-OQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494057801</pqid></control><display><type>article</type><title>Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Shiroto, Takashi ; Romero, Natalia ; Sugiyama, Toru ; Sartoretto, Juliano L ; Kalwa, Hermann ; Yan, Zhonghua ; Shimokawa, Hiroaki ; Michel, Thomas</creator><creatorcontrib>Shiroto, Takashi ; Romero, Natalia ; Sugiyama, Toru ; Sartoretto, Juliano L ; Kalwa, Hermann ; Yan, Zhonghua ; Shimokawa, Hiroaki ; Michel, Thomas</creatorcontrib><description>Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules. Caveolin-1(null) mice have marked metabolic abnormalities, yet the underlying molecular mechanisms are incompletely understood. We found the redox stress plasma biomarker plasma 8-isoprostane was elevated in caveolin-1(null) mice, and discovered that siRNA-mediated caveolin-1 knockdown in endothelial cells promoted significant increases in intracellular H₂O₂. Mitochondrial ROS production was increased in endothelial cells after caveolin-1 knockdown; 2-deoxy-D-glucose attenuated this increase, implicating caveolin-1 in control of glycolytic pathways. We performed unbiased metabolomic characterizations of endothelial cell lysates following caveolin-1 knockdown, and discovered strikingly increased levels (up to 30-fold) of cellular dipeptides, consistent with autophagy activation. Metabolomic analyses revealed that caveolin-1 knockdown led to a decrease in glycolytic intermediates, accompanied by an increase in fatty acids, suggesting a metabolic switch. Taken together, these results establish that caveolin-1 plays a central role in regulation of oxidative stress, metabolic switching, and autophagy in the endothelium, and may represent a critical target in cardiovascular diseases.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0087871</identifier><identifier>PMID: 24498385</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abnormalities ; Animals ; Aorta - metabolism ; Aorta - pathology ; Autophagy ; Bioindicators ; Biology ; Biomarkers ; Cancer ; Cardiovascular diseases ; Catalase - metabolism ; Cattle ; Caveolin ; Caveolin 1 - antagonists & inhibitors ; Caveolin 1 - physiology ; Caveolin-1 ; Cell culture ; Cell death ; Cells, Cultured ; Endothelial cells ; Endothelium ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - pathology ; Experiments ; Fatty acids ; Fibroblasts ; Glucose ; Glutathione - metabolism ; Glycolysis ; Heart diseases ; Homeostasis ; Hospitals ; Hydrogen peroxide ; Hydrogen Peroxide - metabolism ; Hypertension ; Insulin resistance ; Intermediates ; Kinases ; Laboratories ; Life sciences ; Lysates ; Medical schools ; Medicine ; Metabolism ; Metabolome ; Metabolomics ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - pathology ; Molecular modelling ; Nitric oxide ; Oxidative Stress ; Phagocytosis ; Physiology ; Proteins ; Reactive Oxygen Species - metabolism ; RNA, Small Interfering - genetics ; Rodents ; Scaffolding ; Signal Transduction ; Signaling ; siRNA ; Switching</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e87871</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Shiroto et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Shiroto et al 2014 Shiroto et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-af0596ec99f8f9a0b31b730a7b6e55f68a376a8fcf4bb9172e8922064b2fa5d03</citedby><cites>FETCH-LOGICAL-c758t-af0596ec99f8f9a0b31b730a7b6e55f68a376a8fcf4bb9172e8922064b2fa5d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912129/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3912129/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24498385$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shiroto, Takashi</creatorcontrib><creatorcontrib>Romero, Natalia</creatorcontrib><creatorcontrib>Sugiyama, Toru</creatorcontrib><creatorcontrib>Sartoretto, Juliano L</creatorcontrib><creatorcontrib>Kalwa, Hermann</creatorcontrib><creatorcontrib>Yan, Zhonghua</creatorcontrib><creatorcontrib>Shimokawa, Hiroaki</creatorcontrib><creatorcontrib>Michel, Thomas</creatorcontrib><title>Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules. Caveolin-1(null) mice have marked metabolic abnormalities, yet the underlying molecular mechanisms are incompletely understood. We found the redox stress plasma biomarker plasma 8-isoprostane was elevated in caveolin-1(null) mice, and discovered that siRNA-mediated caveolin-1 knockdown in endothelial cells promoted significant increases in intracellular H₂O₂. Mitochondrial ROS production was increased in endothelial cells after caveolin-1 knockdown; 2-deoxy-D-glucose attenuated this increase, implicating caveolin-1 in control of glycolytic pathways. We performed unbiased metabolomic characterizations of endothelial cell lysates following caveolin-1 knockdown, and discovered strikingly increased levels (up to 30-fold) of cellular dipeptides, consistent with autophagy activation. Metabolomic analyses revealed that caveolin-1 knockdown led to a decrease in glycolytic intermediates, accompanied by an increase in fatty acids, suggesting a metabolic switch. Taken together, these results establish that caveolin-1 plays a central role in regulation of oxidative stress, metabolic switching, and autophagy in the endothelium, and may represent a critical target in cardiovascular diseases.</description><subject>Abnormalities</subject><subject>Animals</subject><subject>Aorta - metabolism</subject><subject>Aorta - pathology</subject><subject>Autophagy</subject><subject>Bioindicators</subject><subject>Biology</subject><subject>Biomarkers</subject><subject>Cancer</subject><subject>Cardiovascular diseases</subject><subject>Catalase - metabolism</subject><subject>Cattle</subject><subject>Caveolin</subject><subject>Caveolin 1 - antagonists & inhibitors</subject><subject>Caveolin 1 - physiology</subject><subject>Caveolin-1</subject><subject>Cell culture</subject><subject>Cell death</subject><subject>Cells, Cultured</subject><subject>Endothelial cells</subject><subject>Endothelium</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - pathology</subject><subject>Experiments</subject><subject>Fatty acids</subject><subject>Fibroblasts</subject><subject>Glucose</subject><subject>Glutathione - metabolism</subject><subject>Glycolysis</subject><subject>Heart diseases</subject><subject>Homeostasis</subject><subject>Hospitals</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Hypertension</subject><subject>Insulin resistance</subject><subject>Intermediates</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Life sciences</subject><subject>Lysates</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - pathology</subject><subject>Molecular modelling</subject><subject>Nitric oxide</subject><subject>Oxidative Stress</subject><subject>Phagocytosis</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>RNA, Small Interfering - genetics</subject><subject>Rodents</subject><subject>Scaffolding</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>siRNA</subject><subject>Switching</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkm1rFDEUhQdRbK3-A9GAIAjdNZnMS_JFKIsvhULBt6_hTuZmN8tMsk0ya_vvTd1t6YKC5EPCzXNOwuEUxUtG54y37P3aT8HBMN94h3NKRSta9qg4ZpKXs6ak_PGD81HxLMY1pTUXTfO0OCqrSgou6uMiLWCLfrBuxoiNBIgONlkNA-kxYRitA5eINwSm5DcrWN6ckhETdFmjSfxlk15Ztzwl4Hrir20PyW6RxBQwRmId2ULU0wCBoOt9WuFgp_F58cTAEPHFfj8pfnz6-H3xZXZx-fl8cXYx020t0gwMrWWDWkojjATacda1nELbNVjXphHA2waE0abqOsnaEoUsS9pUXWmg7ik_KV7vfDeDj2ofWFSskhWtW0FZJs53RO9hrTbBjhBulAer_gx8WCoIOY8BFbJemrI3FYi6QtaAQVYjtD3vsZFGZ68P-9embsReo0sBhgPTwxtnV2rpt4pLVrJSZoM3e4PgryaM6R9f3lNLyL-yzvhspkcbtTqrWiE4k2WVqflfqLx6HK3OlTE2zw8E7w4EmUl4nZYwxajOv339f_by5yH79gG7QhjSKvphSta7eAhWO1AHH2NAc58co-q28XdpqNvGq33js-zVw9TvRXcV578BXsn-OQ</recordid><startdate>20140203</startdate><enddate>20140203</enddate><creator>Shiroto, Takashi</creator><creator>Romero, Natalia</creator><creator>Sugiyama, Toru</creator><creator>Sartoretto, Juliano L</creator><creator>Kalwa, Hermann</creator><creator>Yan, Zhonghua</creator><creator>Shimokawa, Hiroaki</creator><creator>Michel, Thomas</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140203</creationdate><title>Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium</title><author>Shiroto, Takashi ; Romero, Natalia ; Sugiyama, Toru ; Sartoretto, Juliano L ; Kalwa, Hermann ; Yan, Zhonghua ; Shimokawa, Hiroaki ; Michel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-af0596ec99f8f9a0b31b730a7b6e55f68a376a8fcf4bb9172e8922064b2fa5d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Abnormalities</topic><topic>Animals</topic><topic>Aorta - metabolism</topic><topic>Aorta - pathology</topic><topic>Autophagy</topic><topic>Bioindicators</topic><topic>Biology</topic><topic>Biomarkers</topic><topic>Cancer</topic><topic>Cardiovascular diseases</topic><topic>Catalase - metabolism</topic><topic>Cattle</topic><topic>Caveolin</topic><topic>Caveolin 1 - antagonists & inhibitors</topic><topic>Caveolin 1 - physiology</topic><topic>Caveolin-1</topic><topic>Cell culture</topic><topic>Cell death</topic><topic>Cells, Cultured</topic><topic>Endothelial cells</topic><topic>Endothelium</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - pathology</topic><topic>Experiments</topic><topic>Fatty acids</topic><topic>Fibroblasts</topic><topic>Glucose</topic><topic>Glutathione - metabolism</topic><topic>Glycolysis</topic><topic>Heart diseases</topic><topic>Homeostasis</topic><topic>Hospitals</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Hypertension</topic><topic>Insulin resistance</topic><topic>Intermediates</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Life sciences</topic><topic>Lysates</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - pathology</topic><topic>Molecular modelling</topic><topic>Nitric oxide</topic><topic>Oxidative Stress</topic><topic>Phagocytosis</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>RNA, Small Interfering - genetics</topic><topic>Rodents</topic><topic>Scaffolding</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>siRNA</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shiroto, Takashi</creatorcontrib><creatorcontrib>Romero, Natalia</creatorcontrib><creatorcontrib>Sugiyama, Toru</creatorcontrib><creatorcontrib>Sartoretto, Juliano L</creatorcontrib><creatorcontrib>Kalwa, Hermann</creatorcontrib><creatorcontrib>Yan, Zhonghua</creatorcontrib><creatorcontrib>Shimokawa, Hiroaki</creatorcontrib><creatorcontrib>Michel, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shiroto, Takashi</au><au>Romero, Natalia</au><au>Sugiyama, Toru</au><au>Sartoretto, Juliano L</au><au>Kalwa, Hermann</au><au>Yan, Zhonghua</au><au>Shimokawa, Hiroaki</au><au>Michel, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-03</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e87871</spage><pages>e87871-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules. Caveolin-1(null) mice have marked metabolic abnormalities, yet the underlying molecular mechanisms are incompletely understood. We found the redox stress plasma biomarker plasma 8-isoprostane was elevated in caveolin-1(null) mice, and discovered that siRNA-mediated caveolin-1 knockdown in endothelial cells promoted significant increases in intracellular H₂O₂. Mitochondrial ROS production was increased in endothelial cells after caveolin-1 knockdown; 2-deoxy-D-glucose attenuated this increase, implicating caveolin-1 in control of glycolytic pathways. We performed unbiased metabolomic characterizations of endothelial cell lysates following caveolin-1 knockdown, and discovered strikingly increased levels (up to 30-fold) of cellular dipeptides, consistent with autophagy activation. Metabolomic analyses revealed that caveolin-1 knockdown led to a decrease in glycolytic intermediates, accompanied by an increase in fatty acids, suggesting a metabolic switch. Taken together, these results establish that caveolin-1 plays a central role in regulation of oxidative stress, metabolic switching, and autophagy in the endothelium, and may represent a critical target in cardiovascular diseases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24498385</pmid><doi>10.1371/journal.pone.0087871</doi><tpages>e87871</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-02, Vol.9 (2), p.e87871 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1494057801 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Abnormalities Animals Aorta - metabolism Aorta - pathology Autophagy Bioindicators Biology Biomarkers Cancer Cardiovascular diseases Catalase - metabolism Cattle Caveolin Caveolin 1 - antagonists & inhibitors Caveolin 1 - physiology Caveolin-1 Cell culture Cell death Cells, Cultured Endothelial cells Endothelium Endothelium, Vascular - metabolism Endothelium, Vascular - pathology Experiments Fatty acids Fibroblasts Glucose Glutathione - metabolism Glycolysis Heart diseases Homeostasis Hospitals Hydrogen peroxide Hydrogen Peroxide - metabolism Hypertension Insulin resistance Intermediates Kinases Laboratories Life sciences Lysates Medical schools Medicine Metabolism Metabolome Metabolomics Mice Mice, Knockout Mitochondria Mitochondria - metabolism Mitochondria - pathology Molecular modelling Nitric oxide Oxidative Stress Phagocytosis Physiology Proteins Reactive Oxygen Species - metabolism RNA, Small Interfering - genetics Rodents Scaffolding Signal Transduction Signaling siRNA Switching |
title | Caveolin-1 is a critical determinant of autophagy, metabolic switching, and oxidative stress in vascular endothelium |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Caveolin-1%20is%20a%20critical%20determinant%20of%20autophagy,%20metabolic%20switching,%20and%20oxidative%20stress%20in%20vascular%20endothelium&rft.jtitle=PloS%20one&rft.au=Shiroto,%20Takashi&rft.date=2014-02-03&rft.volume=9&rft.issue=2&rft.spage=e87871&rft.pages=e87871-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0087871&rft_dat=%3Cgale_plos_%3EA478831924%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1494057801&rft_id=info:pmid/24498385&rft_galeid=A478831924&rft_doaj_id=oai_doaj_org_article_e1d9f2df4a854e16afe15ea7d3de69fc&rfr_iscdi=true |