Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional pre-rRNA cleavage

During yeast ribosome synthesis, three early cleavages generate the 20S precursor to the 18S rRNA component of the 40S subunits. These cleavages can occur either on the nascent transcript (nascent transcript cleavage; NTC) or on the 35S pre-rRNA that has been fully transcribed and released from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-02, Vol.9 (2), p.e85703-e85703
Hauptverfasser: Axt, Konstantin, French, Sarah L, Beyer, Ann L, Tollervey, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e85703
container_issue 2
container_start_page e85703
container_title PloS one
container_volume 9
creator Axt, Konstantin
French, Sarah L
Beyer, Ann L
Tollervey, David
description During yeast ribosome synthesis, three early cleavages generate the 20S precursor to the 18S rRNA component of the 40S subunits. These cleavages can occur either on the nascent transcript (nascent transcript cleavage; NTC) or on the 35S pre-rRNA that has been fully transcribed and released from the rDNA (released transcript cleavage; RTC). These alternative pathways cannot be assessed by conventional RNA analyses, since the pre-rRNA products of NTC and RTC are identical. They can, however, be distinguished kinetically by metabolic labeling and quantified by modeling of the kinetic data. The aim of this work was to use these approaches as a practical tool to identify factors that mediate the decision between utilization of NTC and RTC. The maturation pathways of the 40S and 60S ribosomal subunits are largely distinct. However, depletion of some early-acting 60S synthesis factors, including the 5'-exonuclease Rat1, leads to accumulation of the 35S pre-rRNA and delayed 20S pre-rRNA synthesis. We speculated that this might reflect the loss of NTC. Rat1 acts catalytically in 5.8S and 25S rRNA processing but binds to the pre-rRNA prior to these activities. Kinetic data for strains depleted of Rat1 match well with the modeled effects of strongly reduced NTC. This was confirmed by EM visualization of "Miller" chromatin spreads of nascent pre-rRNA transcripts. Modeling further indicates that NTC takes place in a limited time window, when the polymerase has transcribed ∼ 1.5 Kb past the A2 cleavage site. We speculate that assembly of early-acting 60S synthesis factors is monitored as a quality control system prior to NTC.
doi_str_mv 10.1371/journal.pone.0085703
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1494055244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478831940</galeid><doaj_id>oai_doaj_org_article_3462cf860d8f4bd5a6029673144eb2c0</doaj_id><sourcerecordid>A478831940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-84763fa7db2dc7671cc267bdb42227c0299a3e173c881c27a15e3cd2c698dabe3</originalsourceid><addsrcrecordid>eNqNk0tv1DAUhSMEoqXwDxBYQkKwmMGv2M4GaVTxGFFRaXhsLce5mXHJxFM7qdp_j9NJqwnqAmWRyPnOse_xvVn2kuA5YZJ8uPB9aE0z3_kW5hirXGL2KDsmBaMzQTF7fPB9lD2L8QLjnCkhnmZHlPNCUcGPsz_fXAuds8gkr5voIqpg69vYBdNBRAYFuOxdgC20Hap9QN0G0Mp0BMG1b3vbgImAXIusT5I22uB2nfPJDO0CzMLq-wIN0JVZw_PsSW2aCC_G90n26_Onn6dfZ2fnX5ani7OZFQXtZopLwWojq5JWVgpJrKVCllXJKaXSYloUhgGRzCpFLJWG5MBsRZNaVaYEdpK93vvuGh_1mFPUhBcc53mqPRHLPVF5c6F3wW1NuNHeOH274MNam5BSaUAzLqitlcCVqnlZ5UakAwjJCOdQUouT18dxt77cQmVTUME0E9Ppn9Zt9NpfaVYQUmCRDN6NBsFf9hA7vXXRQtOYFnx_e-6CUJ6rAX3zD_pwdSO1NqkA19bD1djBVC-4VIqRhCZq_gCVntQAzqamql1anwjeTwSJ6eC6W5s-Rr38sfp_9vz3lH17wG7ANN0m-qYf2ihOQb4HbfAxBqjvQyZYDzNxl4YeZkKPM5Fkrw4v6F50NwTsL-k9B1o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1494055244</pqid></control><display><type>article</type><title>Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional pre-rRNA cleavage</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Axt, Konstantin ; French, Sarah L ; Beyer, Ann L ; Tollervey, David</creator><creatorcontrib>Axt, Konstantin ; French, Sarah L ; Beyer, Ann L ; Tollervey, David</creatorcontrib><description>During yeast ribosome synthesis, three early cleavages generate the 20S precursor to the 18S rRNA component of the 40S subunits. These cleavages can occur either on the nascent transcript (nascent transcript cleavage; NTC) or on the 35S pre-rRNA that has been fully transcribed and released from the rDNA (released transcript cleavage; RTC). These alternative pathways cannot be assessed by conventional RNA analyses, since the pre-rRNA products of NTC and RTC are identical. They can, however, be distinguished kinetically by metabolic labeling and quantified by modeling of the kinetic data. The aim of this work was to use these approaches as a practical tool to identify factors that mediate the decision between utilization of NTC and RTC. The maturation pathways of the 40S and 60S ribosomal subunits are largely distinct. However, depletion of some early-acting 60S synthesis factors, including the 5'-exonuclease Rat1, leads to accumulation of the 35S pre-rRNA and delayed 20S pre-rRNA synthesis. We speculated that this might reflect the loss of NTC. Rat1 acts catalytically in 5.8S and 25S rRNA processing but binds to the pre-rRNA prior to these activities. Kinetic data for strains depleted of Rat1 match well with the modeled effects of strongly reduced NTC. This was confirmed by EM visualization of "Miller" chromatin spreads of nascent pre-rRNA transcripts. Modeling further indicates that NTC takes place in a limited time window, when the polymerase has transcribed ∼ 1.5 Kb past the A2 cleavage site. We speculate that assembly of early-acting 60S synthesis factors is monitored as a quality control system prior to NTC.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0085703</identifier><identifier>PMID: 24498264</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Baking yeast ; Biology ; Blotting, Northern ; Blotting, Western ; Chromatin ; Chromatin - genetics ; Chromatin - metabolism ; Chromatin - ultrastructure ; Cleavage ; Control systems ; Exonuclease ; Exoribonucleases - genetics ; Exoribonucleases - metabolism ; Hostages ; Immunology ; Kinetics ; Microscopy, Electron ; Modelling ; Mutation ; Quality control ; Ribonucleic acid ; Ribosomal subunits ; Ribosome Subunits, Large, Eukaryotic - genetics ; Ribosome Subunits, Large, Eukaryotic - metabolism ; Ribosomes - genetics ; Ribosomes - metabolism ; RNA ; RNA Precursors - genetics ; RNA Precursors - metabolism ; RNA processing ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Ribosomal - genetics ; RNA, Ribosomal - metabolism ; RNA, Ribosomal, 5.8S - genetics ; RNA, Ribosomal, 5.8S - metabolism ; rRNA 18S ; rRNA 20S ; rRNA 25S ; rRNA 35S ; rRNA 5.8S ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Synthesis ; Time Factors ; Transcription ; Transcription, Genetic ; Windows (intervals) ; Yeast</subject><ispartof>PloS one, 2014-02, Vol.9 (2), p.e85703-e85703</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Axt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/legalcode (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Axt et al 2014 Axt et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-84763fa7db2dc7671cc267bdb42227c0299a3e173c881c27a15e3cd2c698dabe3</citedby><cites>FETCH-LOGICAL-c692t-84763fa7db2dc7671cc267bdb42227c0299a3e173c881c27a15e3cd2c698dabe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911906/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3911906/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24498264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Axt, Konstantin</creatorcontrib><creatorcontrib>French, Sarah L</creatorcontrib><creatorcontrib>Beyer, Ann L</creatorcontrib><creatorcontrib>Tollervey, David</creatorcontrib><title>Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional pre-rRNA cleavage</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>During yeast ribosome synthesis, three early cleavages generate the 20S precursor to the 18S rRNA component of the 40S subunits. These cleavages can occur either on the nascent transcript (nascent transcript cleavage; NTC) or on the 35S pre-rRNA that has been fully transcribed and released from the rDNA (released transcript cleavage; RTC). These alternative pathways cannot be assessed by conventional RNA analyses, since the pre-rRNA products of NTC and RTC are identical. They can, however, be distinguished kinetically by metabolic labeling and quantified by modeling of the kinetic data. The aim of this work was to use these approaches as a practical tool to identify factors that mediate the decision between utilization of NTC and RTC. The maturation pathways of the 40S and 60S ribosomal subunits are largely distinct. However, depletion of some early-acting 60S synthesis factors, including the 5'-exonuclease Rat1, leads to accumulation of the 35S pre-rRNA and delayed 20S pre-rRNA synthesis. We speculated that this might reflect the loss of NTC. Rat1 acts catalytically in 5.8S and 25S rRNA processing but binds to the pre-rRNA prior to these activities. Kinetic data for strains depleted of Rat1 match well with the modeled effects of strongly reduced NTC. This was confirmed by EM visualization of "Miller" chromatin spreads of nascent pre-rRNA transcripts. Modeling further indicates that NTC takes place in a limited time window, when the polymerase has transcribed ∼ 1.5 Kb past the A2 cleavage site. We speculate that assembly of early-acting 60S synthesis factors is monitored as a quality control system prior to NTC.</description><subject>Baking yeast</subject><subject>Biology</subject><subject>Blotting, Northern</subject><subject>Blotting, Western</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - metabolism</subject><subject>Chromatin - ultrastructure</subject><subject>Cleavage</subject><subject>Control systems</subject><subject>Exonuclease</subject><subject>Exoribonucleases - genetics</subject><subject>Exoribonucleases - metabolism</subject><subject>Hostages</subject><subject>Immunology</subject><subject>Kinetics</subject><subject>Microscopy, Electron</subject><subject>Modelling</subject><subject>Mutation</subject><subject>Quality control</subject><subject>Ribonucleic acid</subject><subject>Ribosomal subunits</subject><subject>Ribosome Subunits, Large, Eukaryotic - genetics</subject><subject>Ribosome Subunits, Large, Eukaryotic - metabolism</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA Precursors - genetics</subject><subject>RNA Precursors - metabolism</subject><subject>RNA processing</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Ribosomal - genetics</subject><subject>RNA, Ribosomal - metabolism</subject><subject>RNA, Ribosomal, 5.8S - genetics</subject><subject>RNA, Ribosomal, 5.8S - metabolism</subject><subject>rRNA 18S</subject><subject>rRNA 20S</subject><subject>rRNA 25S</subject><subject>rRNA 35S</subject><subject>rRNA 5.8S</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Synthesis</subject><subject>Time Factors</subject><subject>Transcription</subject><subject>Transcription, Genetic</subject><subject>Windows (intervals)</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAUhSMEoqXwDxBYQkKwmMGv2M4GaVTxGFFRaXhsLce5mXHJxFM7qdp_j9NJqwnqAmWRyPnOse_xvVn2kuA5YZJ8uPB9aE0z3_kW5hirXGL2KDsmBaMzQTF7fPB9lD2L8QLjnCkhnmZHlPNCUcGPsz_fXAuds8gkr5voIqpg69vYBdNBRAYFuOxdgC20Hap9QN0G0Mp0BMG1b3vbgImAXIusT5I22uB2nfPJDO0CzMLq-wIN0JVZw_PsSW2aCC_G90n26_Onn6dfZ2fnX5ani7OZFQXtZopLwWojq5JWVgpJrKVCllXJKaXSYloUhgGRzCpFLJWG5MBsRZNaVaYEdpK93vvuGh_1mFPUhBcc53mqPRHLPVF5c6F3wW1NuNHeOH274MNam5BSaUAzLqitlcCVqnlZ5UakAwjJCOdQUouT18dxt77cQmVTUME0E9Ppn9Zt9NpfaVYQUmCRDN6NBsFf9hA7vXXRQtOYFnx_e-6CUJ6rAX3zD_pwdSO1NqkA19bD1djBVC-4VIqRhCZq_gCVntQAzqamql1anwjeTwSJ6eC6W5s-Rr38sfp_9vz3lH17wG7ANN0m-qYf2ihOQb4HbfAxBqjvQyZYDzNxl4YeZkKPM5Fkrw4v6F50NwTsL-k9B1o</recordid><startdate>20140203</startdate><enddate>20140203</enddate><creator>Axt, Konstantin</creator><creator>French, Sarah L</creator><creator>Beyer, Ann L</creator><creator>Tollervey, David</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140203</creationdate><title>Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional pre-rRNA cleavage</title><author>Axt, Konstantin ; French, Sarah L ; Beyer, Ann L ; Tollervey, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-84763fa7db2dc7671cc267bdb42227c0299a3e173c881c27a15e3cd2c698dabe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Baking yeast</topic><topic>Biology</topic><topic>Blotting, Northern</topic><topic>Blotting, Western</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - metabolism</topic><topic>Chromatin - ultrastructure</topic><topic>Cleavage</topic><topic>Control systems</topic><topic>Exonuclease</topic><topic>Exoribonucleases - genetics</topic><topic>Exoribonucleases - metabolism</topic><topic>Hostages</topic><topic>Immunology</topic><topic>Kinetics</topic><topic>Microscopy, Electron</topic><topic>Modelling</topic><topic>Mutation</topic><topic>Quality control</topic><topic>Ribonucleic acid</topic><topic>Ribosomal subunits</topic><topic>Ribosome Subunits, Large, Eukaryotic - genetics</topic><topic>Ribosome Subunits, Large, Eukaryotic - metabolism</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA Precursors - genetics</topic><topic>RNA Precursors - metabolism</topic><topic>RNA processing</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Ribosomal - genetics</topic><topic>RNA, Ribosomal - metabolism</topic><topic>RNA, Ribosomal, 5.8S - genetics</topic><topic>RNA, Ribosomal, 5.8S - metabolism</topic><topic>rRNA 18S</topic><topic>rRNA 20S</topic><topic>rRNA 25S</topic><topic>rRNA 35S</topic><topic>rRNA 5.8S</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Synthesis</topic><topic>Time Factors</topic><topic>Transcription</topic><topic>Transcription, Genetic</topic><topic>Windows (intervals)</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Axt, Konstantin</creatorcontrib><creatorcontrib>French, Sarah L</creatorcontrib><creatorcontrib>Beyer, Ann L</creatorcontrib><creatorcontrib>Tollervey, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Axt, Konstantin</au><au>French, Sarah L</au><au>Beyer, Ann L</au><au>Tollervey, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional pre-rRNA cleavage</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-02-03</date><risdate>2014</risdate><volume>9</volume><issue>2</issue><spage>e85703</spage><epage>e85703</epage><pages>e85703-e85703</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>During yeast ribosome synthesis, three early cleavages generate the 20S precursor to the 18S rRNA component of the 40S subunits. These cleavages can occur either on the nascent transcript (nascent transcript cleavage; NTC) or on the 35S pre-rRNA that has been fully transcribed and released from the rDNA (released transcript cleavage; RTC). These alternative pathways cannot be assessed by conventional RNA analyses, since the pre-rRNA products of NTC and RTC are identical. They can, however, be distinguished kinetically by metabolic labeling and quantified by modeling of the kinetic data. The aim of this work was to use these approaches as a practical tool to identify factors that mediate the decision between utilization of NTC and RTC. The maturation pathways of the 40S and 60S ribosomal subunits are largely distinct. However, depletion of some early-acting 60S synthesis factors, including the 5'-exonuclease Rat1, leads to accumulation of the 35S pre-rRNA and delayed 20S pre-rRNA synthesis. We speculated that this might reflect the loss of NTC. Rat1 acts catalytically in 5.8S and 25S rRNA processing but binds to the pre-rRNA prior to these activities. Kinetic data for strains depleted of Rat1 match well with the modeled effects of strongly reduced NTC. This was confirmed by EM visualization of "Miller" chromatin spreads of nascent pre-rRNA transcripts. Modeling further indicates that NTC takes place in a limited time window, when the polymerase has transcribed ∼ 1.5 Kb past the A2 cleavage site. We speculate that assembly of early-acting 60S synthesis factors is monitored as a quality control system prior to NTC.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24498264</pmid><doi>10.1371/journal.pone.0085703</doi><tpages>e85703</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-02, Vol.9 (2), p.e85703-e85703
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1494055244
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Baking yeast
Biology
Blotting, Northern
Blotting, Western
Chromatin
Chromatin - genetics
Chromatin - metabolism
Chromatin - ultrastructure
Cleavage
Control systems
Exonuclease
Exoribonucleases - genetics
Exoribonucleases - metabolism
Hostages
Immunology
Kinetics
Microscopy, Electron
Modelling
Mutation
Quality control
Ribonucleic acid
Ribosomal subunits
Ribosome Subunits, Large, Eukaryotic - genetics
Ribosome Subunits, Large, Eukaryotic - metabolism
Ribosomes - genetics
Ribosomes - metabolism
RNA
RNA Precursors - genetics
RNA Precursors - metabolism
RNA processing
RNA, Fungal - genetics
RNA, Fungal - metabolism
RNA, Ribosomal - genetics
RNA, Ribosomal - metabolism
RNA, Ribosomal, 5.8S - genetics
RNA, Ribosomal, 5.8S - metabolism
rRNA 18S
rRNA 20S
rRNA 25S
rRNA 35S
rRNA 5.8S
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Synthesis
Time Factors
Transcription
Transcription, Genetic
Windows (intervals)
Yeast
title Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional pre-rRNA cleavage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20analysis%20demonstrates%20a%20requirement%20for%20the%20Rat1%20exonuclease%20in%20cotranscriptional%20pre-rRNA%20cleavage&rft.jtitle=PloS%20one&rft.au=Axt,%20Konstantin&rft.date=2014-02-03&rft.volume=9&rft.issue=2&rft.spage=e85703&rft.epage=e85703&rft.pages=e85703-e85703&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0085703&rft_dat=%3Cgale_plos_%3EA478831940%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1494055244&rft_id=info:pmid/24498264&rft_galeid=A478831940&rft_doaj_id=oai_doaj_org_article_3462cf860d8f4bd5a6029673144eb2c0&rfr_iscdi=true