Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease
Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-asso...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-01, Vol.9 (1), p.e87101-e87101 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e87101 |
---|---|
container_issue | 1 |
container_start_page | e87101 |
container_title | PloS one |
container_volume | 9 |
creator | Küng, Denise Bigler, Laurent Davis, Leyla R Gratwicke, Brian Griffith, Edgardo Woodhams, Douglas C |
description | Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant - skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control - sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7-12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities. |
doi_str_mv | 10.1371/journal.pone.0087101 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1492542198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478835539</galeid><doaj_id>oai_doaj_org_article_badf098a2ccb47848af2d3df3cf8f119</doaj_id><sourcerecordid>A478835539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6f47e9b116a36dc237c987f79d28a4c40fcc68ae293243ed9ca414ff5b8a64193</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQDwqIPM-bWNvVBWBYvAwsLrvoaTtOkk6FtZptUdr696Ux3mco-SB4aTn__c8s5SfKa4CVhOfm4cUPfQbPcuk4vMRY5weRJckoKRhcZxezp0f0keeH9BuOUiSx7npxQzkUheH6a7G4ClLaxYYecQa1VvSutC4AMqNEMQVeo3KG18wHZth06jXpdDw0E67pPyHbG9a3tarQ9KK1CPvRRVlvtUXCohQ5qjaDdrm1poUOV9Rq8fpk8M9B4_Wr6niW_vn75efl9cXX9bXV5cbVQWUHDIjM810VJSAYsqxRluSpEbvKiogK44tgolQnQNNbKma4KBZxwY9JSQMZjB86Stwe_28Z5OXXNS8ILmnJKChGJ1YGoHGzktrct9DvpwMq9wfW1hD4W1mhZQmVwIYAqVfJccAGGVqwyTBlhyD7a5ynaULa6UrqLzWhmTud_OruWtfsjWYEzgsdk3k8Oenc7aB9ka73STQOddsM-b84wzVIe0Xf_oI9XN1E1xALG94px1ehUXsQSBEtTNua9fISKp9JxKOKIGRvtM8GHmSAyQd-FGgbv5ermx_-z17_n7PkRu9bQhLV3zTCOm5-D_ADGkfW-1-ahyQTLcUPuuyHHDZHThkTZm-MHehDdrwT7C5WUDnQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492542198</pqid></control><display><type>article</type><title>Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Küng, Denise ; Bigler, Laurent ; Davis, Leyla R ; Gratwicke, Brian ; Griffith, Edgardo ; Woodhams, Douglas C</creator><contributor>Sturtevant, Joy</contributor><creatorcontrib>Küng, Denise ; Bigler, Laurent ; Davis, Leyla R ; Gratwicke, Brian ; Griffith, Edgardo ; Woodhams, Douglas C ; Sturtevant, Joy</creatorcontrib><description>Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant - skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control - sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7-12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0087101</identifier><identifier>PMID: 24489847</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amphibia ; Amphibian Proteins - physiology ; Amphibians ; Analysis ; Animals ; Antibiotics ; Antimicrobial Cationic Peptides - physiology ; Antimicrobial peptides ; Anura - immunology ; Anura - microbiology ; Bacillus - physiology ; Batrachochytrium dendrobatidis ; Biology ; Body mass ; Bowel disease ; Chytridiomycosis ; Chytridiomycota - immunology ; Colonization ; Communities ; Conservation ; Dermatologic agents ; Dermatomycoses - immunology ; Dermatomycoses - veterinary ; Disease control ; Disease Resistance ; Ecological monitoring ; Ecology ; Environmental studies ; Evolutionary biology ; Frogs ; Fungal diseases ; Fungi ; Gastrointestinal agents ; Genomes ; Host-Pathogen Interactions ; Immune response ; Immunity ; Immunoregulation ; Livestock ; Medicine ; Mesocosms ; Microbial activity ; Microbial drug resistance ; Microbiota ; Microbiota (Symbiotic organisms) ; Microbiota - immunology ; Microorganisms ; Mucosa ; Mycoses ; National parks ; Peptides ; Prebiotics ; Probiotics ; Secretions ; Skin ; Skin - metabolism ; Skin - microbiology ; Skin care ; Skin resistance ; Studies ; Transplants & implants ; Weight Loss - immunology ; Wildlife ; Wildlife conservation</subject><ispartof>PloS one, 2014-01, Vol.9 (1), p.e87101-e87101</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6f47e9b116a36dc237c987f79d28a4c40fcc68ae293243ed9ca414ff5b8a64193</citedby><cites>FETCH-LOGICAL-c692t-6f47e9b116a36dc237c987f79d28a4c40fcc68ae293243ed9ca414ff5b8a64193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906108/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906108/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24489847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sturtevant, Joy</contributor><creatorcontrib>Küng, Denise</creatorcontrib><creatorcontrib>Bigler, Laurent</creatorcontrib><creatorcontrib>Davis, Leyla R</creatorcontrib><creatorcontrib>Gratwicke, Brian</creatorcontrib><creatorcontrib>Griffith, Edgardo</creatorcontrib><creatorcontrib>Woodhams, Douglas C</creatorcontrib><title>Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant - skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control - sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7-12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities.</description><subject>Amphibia</subject><subject>Amphibian Proteins - physiology</subject><subject>Amphibians</subject><subject>Analysis</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Antimicrobial Cationic Peptides - physiology</subject><subject>Antimicrobial peptides</subject><subject>Anura - immunology</subject><subject>Anura - microbiology</subject><subject>Bacillus - physiology</subject><subject>Batrachochytrium dendrobatidis</subject><subject>Biology</subject><subject>Body mass</subject><subject>Bowel disease</subject><subject>Chytridiomycosis</subject><subject>Chytridiomycota - immunology</subject><subject>Colonization</subject><subject>Communities</subject><subject>Conservation</subject><subject>Dermatologic agents</subject><subject>Dermatomycoses - immunology</subject><subject>Dermatomycoses - veterinary</subject><subject>Disease control</subject><subject>Disease Resistance</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Environmental studies</subject><subject>Evolutionary biology</subject><subject>Frogs</subject><subject>Fungal diseases</subject><subject>Fungi</subject><subject>Gastrointestinal agents</subject><subject>Genomes</subject><subject>Host-Pathogen Interactions</subject><subject>Immune response</subject><subject>Immunity</subject><subject>Immunoregulation</subject><subject>Livestock</subject><subject>Medicine</subject><subject>Mesocosms</subject><subject>Microbial activity</subject><subject>Microbial drug resistance</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microbiota - immunology</subject><subject>Microorganisms</subject><subject>Mucosa</subject><subject>Mycoses</subject><subject>National parks</subject><subject>Peptides</subject><subject>Prebiotics</subject><subject>Probiotics</subject><subject>Secretions</subject><subject>Skin</subject><subject>Skin - metabolism</subject><subject>Skin - microbiology</subject><subject>Skin care</subject><subject>Skin resistance</subject><subject>Studies</subject><subject>Transplants & implants</subject><subject>Weight Loss - immunology</subject><subject>Wildlife</subject><subject>Wildlife conservation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQDwqIPM-bWNvVBWBYvAwsLrvoaTtOkk6FtZptUdr696Ux3mco-SB4aTn__c8s5SfKa4CVhOfm4cUPfQbPcuk4vMRY5weRJckoKRhcZxezp0f0keeH9BuOUiSx7npxQzkUheH6a7G4ClLaxYYecQa1VvSutC4AMqNEMQVeo3KG18wHZth06jXpdDw0E67pPyHbG9a3tarQ9KK1CPvRRVlvtUXCohQ5qjaDdrm1poUOV9Rq8fpk8M9B4_Wr6niW_vn75efl9cXX9bXV5cbVQWUHDIjM810VJSAYsqxRluSpEbvKiogK44tgolQnQNNbKma4KBZxwY9JSQMZjB86Stwe_28Z5OXXNS8ILmnJKChGJ1YGoHGzktrct9DvpwMq9wfW1hD4W1mhZQmVwIYAqVfJccAGGVqwyTBlhyD7a5ynaULa6UrqLzWhmTud_OruWtfsjWYEzgsdk3k8Oenc7aB9ka73STQOddsM-b84wzVIe0Xf_oI9XN1E1xALG94px1ehUXsQSBEtTNua9fISKp9JxKOKIGRvtM8GHmSAyQd-FGgbv5ermx_-z17_n7PkRu9bQhLV3zTCOm5-D_ADGkfW-1-ahyQTLcUPuuyHHDZHThkTZm-MHehDdrwT7C5WUDnQ</recordid><startdate>20140129</startdate><enddate>20140129</enddate><creator>Küng, Denise</creator><creator>Bigler, Laurent</creator><creator>Davis, Leyla R</creator><creator>Gratwicke, Brian</creator><creator>Griffith, Edgardo</creator><creator>Woodhams, Douglas C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140129</creationdate><title>Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease</title><author>Küng, Denise ; Bigler, Laurent ; Davis, Leyla R ; Gratwicke, Brian ; Griffith, Edgardo ; Woodhams, Douglas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6f47e9b116a36dc237c987f79d28a4c40fcc68ae293243ed9ca414ff5b8a64193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amphibia</topic><topic>Amphibian Proteins - physiology</topic><topic>Amphibians</topic><topic>Analysis</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Antimicrobial Cationic Peptides - physiology</topic><topic>Antimicrobial peptides</topic><topic>Anura - immunology</topic><topic>Anura - microbiology</topic><topic>Bacillus - physiology</topic><topic>Batrachochytrium dendrobatidis</topic><topic>Biology</topic><topic>Body mass</topic><topic>Bowel disease</topic><topic>Chytridiomycosis</topic><topic>Chytridiomycota - immunology</topic><topic>Colonization</topic><topic>Communities</topic><topic>Conservation</topic><topic>Dermatologic agents</topic><topic>Dermatomycoses - immunology</topic><topic>Dermatomycoses - veterinary</topic><topic>Disease control</topic><topic>Disease Resistance</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Environmental studies</topic><topic>Evolutionary biology</topic><topic>Frogs</topic><topic>Fungal diseases</topic><topic>Fungi</topic><topic>Gastrointestinal agents</topic><topic>Genomes</topic><topic>Host-Pathogen Interactions</topic><topic>Immune response</topic><topic>Immunity</topic><topic>Immunoregulation</topic><topic>Livestock</topic><topic>Medicine</topic><topic>Mesocosms</topic><topic>Microbial activity</topic><topic>Microbial drug resistance</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microbiota - immunology</topic><topic>Microorganisms</topic><topic>Mucosa</topic><topic>Mycoses</topic><topic>National parks</topic><topic>Peptides</topic><topic>Prebiotics</topic><topic>Probiotics</topic><topic>Secretions</topic><topic>Skin</topic><topic>Skin - metabolism</topic><topic>Skin - microbiology</topic><topic>Skin care</topic><topic>Skin resistance</topic><topic>Studies</topic><topic>Transplants & implants</topic><topic>Weight Loss - immunology</topic><topic>Wildlife</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Küng, Denise</creatorcontrib><creatorcontrib>Bigler, Laurent</creatorcontrib><creatorcontrib>Davis, Leyla R</creatorcontrib><creatorcontrib>Gratwicke, Brian</creatorcontrib><creatorcontrib>Griffith, Edgardo</creatorcontrib><creatorcontrib>Woodhams, Douglas C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Küng, Denise</au><au>Bigler, Laurent</au><au>Davis, Leyla R</au><au>Gratwicke, Brian</au><au>Griffith, Edgardo</au><au>Woodhams, Douglas C</au><au>Sturtevant, Joy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-01-29</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>e87101</spage><epage>e87101</epage><pages>e87101-e87101</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant - skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control - sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7-12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24489847</pmid><doi>10.1371/journal.pone.0087101</doi><tpages>e87101</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-01, Vol.9 (1), p.e87101-e87101 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1492542198 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amphibia Amphibian Proteins - physiology Amphibians Analysis Animals Antibiotics Antimicrobial Cationic Peptides - physiology Antimicrobial peptides Anura - immunology Anura - microbiology Bacillus - physiology Batrachochytrium dendrobatidis Biology Body mass Bowel disease Chytridiomycosis Chytridiomycota - immunology Colonization Communities Conservation Dermatologic agents Dermatomycoses - immunology Dermatomycoses - veterinary Disease control Disease Resistance Ecological monitoring Ecology Environmental studies Evolutionary biology Frogs Fungal diseases Fungi Gastrointestinal agents Genomes Host-Pathogen Interactions Immune response Immunity Immunoregulation Livestock Medicine Mesocosms Microbial activity Microbial drug resistance Microbiota Microbiota (Symbiotic organisms) Microbiota - immunology Microorganisms Mucosa Mycoses National parks Peptides Prebiotics Probiotics Secretions Skin Skin - metabolism Skin - microbiology Skin care Skin resistance Studies Transplants & implants Weight Loss - immunology Wildlife Wildlife conservation |
title | Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20microbiota%20facilitated%20by%20host%20immune%20regulation:%20informing%20probiotic%20strategies%20to%20manage%20amphibian%20disease&rft.jtitle=PloS%20one&rft.au=K%C3%BCng,%20Denise&rft.date=2014-01-29&rft.volume=9&rft.issue=1&rft.spage=e87101&rft.epage=e87101&rft.pages=e87101-e87101&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0087101&rft_dat=%3Cgale_plos_%3EA478835539%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492542198&rft_id=info:pmid/24489847&rft_galeid=A478835539&rft_doaj_id=oai_doaj_org_article_badf098a2ccb47848af2d3df3cf8f119&rfr_iscdi=true |