Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease

Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-asso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-01, Vol.9 (1), p.e87101-e87101
Hauptverfasser: Küng, Denise, Bigler, Laurent, Davis, Leyla R, Gratwicke, Brian, Griffith, Edgardo, Woodhams, Douglas C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e87101
container_issue 1
container_start_page e87101
container_title PloS one
container_volume 9
creator Küng, Denise
Bigler, Laurent
Davis, Leyla R
Gratwicke, Brian
Griffith, Edgardo
Woodhams, Douglas C
description Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant - skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control - sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7-12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities.
doi_str_mv 10.1371/journal.pone.0087101
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1492542198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478835539</galeid><doaj_id>oai_doaj_org_article_badf098a2ccb47848af2d3df3cf8f119</doaj_id><sourcerecordid>A478835539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6f47e9b116a36dc237c987f79d28a4c40fcc68ae293243ed9ca414ff5b8a64193</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7rr6DUQDwqIPM-bWNvVBWBYvAwsLrvoaTtOkk6FtZptUdr696Ux3mco-SB4aTn__c8s5SfKa4CVhOfm4cUPfQbPcuk4vMRY5weRJckoKRhcZxezp0f0keeH9BuOUiSx7npxQzkUheH6a7G4ClLaxYYecQa1VvSutC4AMqNEMQVeo3KG18wHZth06jXpdDw0E67pPyHbG9a3tarQ9KK1CPvRRVlvtUXCohQ5qjaDdrm1poUOV9Rq8fpk8M9B4_Wr6niW_vn75efl9cXX9bXV5cbVQWUHDIjM810VJSAYsqxRluSpEbvKiogK44tgolQnQNNbKma4KBZxwY9JSQMZjB86Stwe_28Z5OXXNS8ILmnJKChGJ1YGoHGzktrct9DvpwMq9wfW1hD4W1mhZQmVwIYAqVfJccAGGVqwyTBlhyD7a5ynaULa6UrqLzWhmTud_OruWtfsjWYEzgsdk3k8Oenc7aB9ka73STQOddsM-b84wzVIe0Xf_oI9XN1E1xALG94px1ehUXsQSBEtTNua9fISKp9JxKOKIGRvtM8GHmSAyQd-FGgbv5ermx_-z17_n7PkRu9bQhLV3zTCOm5-D_ADGkfW-1-ahyQTLcUPuuyHHDZHThkTZm-MHehDdrwT7C5WUDnQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492542198</pqid></control><display><type>article</type><title>Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Küng, Denise ; Bigler, Laurent ; Davis, Leyla R ; Gratwicke, Brian ; Griffith, Edgardo ; Woodhams, Douglas C</creator><contributor>Sturtevant, Joy</contributor><creatorcontrib>Küng, Denise ; Bigler, Laurent ; Davis, Leyla R ; Gratwicke, Brian ; Griffith, Edgardo ; Woodhams, Douglas C ; Sturtevant, Joy</creatorcontrib><description>Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant - skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control - sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7-12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0087101</identifier><identifier>PMID: 24489847</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amphibia ; Amphibian Proteins - physiology ; Amphibians ; Analysis ; Animals ; Antibiotics ; Antimicrobial Cationic Peptides - physiology ; Antimicrobial peptides ; Anura - immunology ; Anura - microbiology ; Bacillus - physiology ; Batrachochytrium dendrobatidis ; Biology ; Body mass ; Bowel disease ; Chytridiomycosis ; Chytridiomycota - immunology ; Colonization ; Communities ; Conservation ; Dermatologic agents ; Dermatomycoses - immunology ; Dermatomycoses - veterinary ; Disease control ; Disease Resistance ; Ecological monitoring ; Ecology ; Environmental studies ; Evolutionary biology ; Frogs ; Fungal diseases ; Fungi ; Gastrointestinal agents ; Genomes ; Host-Pathogen Interactions ; Immune response ; Immunity ; Immunoregulation ; Livestock ; Medicine ; Mesocosms ; Microbial activity ; Microbial drug resistance ; Microbiota ; Microbiota (Symbiotic organisms) ; Microbiota - immunology ; Microorganisms ; Mucosa ; Mycoses ; National parks ; Peptides ; Prebiotics ; Probiotics ; Secretions ; Skin ; Skin - metabolism ; Skin - microbiology ; Skin care ; Skin resistance ; Studies ; Transplants &amp; implants ; Weight Loss - immunology ; Wildlife ; Wildlife conservation</subject><ispartof>PloS one, 2014-01, Vol.9 (1), p.e87101-e87101</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6f47e9b116a36dc237c987f79d28a4c40fcc68ae293243ed9ca414ff5b8a64193</citedby><cites>FETCH-LOGICAL-c692t-6f47e9b116a36dc237c987f79d28a4c40fcc68ae293243ed9ca414ff5b8a64193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906108/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3906108/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24489847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sturtevant, Joy</contributor><creatorcontrib>Küng, Denise</creatorcontrib><creatorcontrib>Bigler, Laurent</creatorcontrib><creatorcontrib>Davis, Leyla R</creatorcontrib><creatorcontrib>Gratwicke, Brian</creatorcontrib><creatorcontrib>Griffith, Edgardo</creatorcontrib><creatorcontrib>Woodhams, Douglas C</creatorcontrib><title>Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant - skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control - sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7-12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities.</description><subject>Amphibia</subject><subject>Amphibian Proteins - physiology</subject><subject>Amphibians</subject><subject>Analysis</subject><subject>Animals</subject><subject>Antibiotics</subject><subject>Antimicrobial Cationic Peptides - physiology</subject><subject>Antimicrobial peptides</subject><subject>Anura - immunology</subject><subject>Anura - microbiology</subject><subject>Bacillus - physiology</subject><subject>Batrachochytrium dendrobatidis</subject><subject>Biology</subject><subject>Body mass</subject><subject>Bowel disease</subject><subject>Chytridiomycosis</subject><subject>Chytridiomycota - immunology</subject><subject>Colonization</subject><subject>Communities</subject><subject>Conservation</subject><subject>Dermatologic agents</subject><subject>Dermatomycoses - immunology</subject><subject>Dermatomycoses - veterinary</subject><subject>Disease control</subject><subject>Disease Resistance</subject><subject>Ecological monitoring</subject><subject>Ecology</subject><subject>Environmental studies</subject><subject>Evolutionary biology</subject><subject>Frogs</subject><subject>Fungal diseases</subject><subject>Fungi</subject><subject>Gastrointestinal agents</subject><subject>Genomes</subject><subject>Host-Pathogen Interactions</subject><subject>Immune response</subject><subject>Immunity</subject><subject>Immunoregulation</subject><subject>Livestock</subject><subject>Medicine</subject><subject>Mesocosms</subject><subject>Microbial activity</subject><subject>Microbial drug resistance</subject><subject>Microbiota</subject><subject>Microbiota (Symbiotic organisms)</subject><subject>Microbiota - immunology</subject><subject>Microorganisms</subject><subject>Mucosa</subject><subject>Mycoses</subject><subject>National parks</subject><subject>Peptides</subject><subject>Prebiotics</subject><subject>Probiotics</subject><subject>Secretions</subject><subject>Skin</subject><subject>Skin - metabolism</subject><subject>Skin - microbiology</subject><subject>Skin care</subject><subject>Skin resistance</subject><subject>Studies</subject><subject>Transplants &amp; implants</subject><subject>Weight Loss - immunology</subject><subject>Wildlife</subject><subject>Wildlife conservation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7rr6DUQDwqIPM-bWNvVBWBYvAwsLrvoaTtOkk6FtZptUdr696Ux3mco-SB4aTn__c8s5SfKa4CVhOfm4cUPfQbPcuk4vMRY5weRJckoKRhcZxezp0f0keeH9BuOUiSx7npxQzkUheH6a7G4ClLaxYYecQa1VvSutC4AMqNEMQVeo3KG18wHZth06jXpdDw0E67pPyHbG9a3tarQ9KK1CPvRRVlvtUXCohQ5qjaDdrm1poUOV9Rq8fpk8M9B4_Wr6niW_vn75efl9cXX9bXV5cbVQWUHDIjM810VJSAYsqxRluSpEbvKiogK44tgolQnQNNbKma4KBZxwY9JSQMZjB86Stwe_28Z5OXXNS8ILmnJKChGJ1YGoHGzktrct9DvpwMq9wfW1hD4W1mhZQmVwIYAqVfJccAGGVqwyTBlhyD7a5ynaULa6UrqLzWhmTud_OruWtfsjWYEzgsdk3k8Oenc7aB9ka73STQOddsM-b84wzVIe0Xf_oI9XN1E1xALG94px1ehUXsQSBEtTNua9fISKp9JxKOKIGRvtM8GHmSAyQd-FGgbv5ermx_-z17_n7PkRu9bQhLV3zTCOm5-D_ADGkfW-1-ahyQTLcUPuuyHHDZHThkTZm-MHehDdrwT7C5WUDnQ</recordid><startdate>20140129</startdate><enddate>20140129</enddate><creator>Küng, Denise</creator><creator>Bigler, Laurent</creator><creator>Davis, Leyla R</creator><creator>Gratwicke, Brian</creator><creator>Griffith, Edgardo</creator><creator>Woodhams, Douglas C</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140129</creationdate><title>Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease</title><author>Küng, Denise ; Bigler, Laurent ; Davis, Leyla R ; Gratwicke, Brian ; Griffith, Edgardo ; Woodhams, Douglas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6f47e9b116a36dc237c987f79d28a4c40fcc68ae293243ed9ca414ff5b8a64193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Amphibia</topic><topic>Amphibian Proteins - physiology</topic><topic>Amphibians</topic><topic>Analysis</topic><topic>Animals</topic><topic>Antibiotics</topic><topic>Antimicrobial Cationic Peptides - physiology</topic><topic>Antimicrobial peptides</topic><topic>Anura - immunology</topic><topic>Anura - microbiology</topic><topic>Bacillus - physiology</topic><topic>Batrachochytrium dendrobatidis</topic><topic>Biology</topic><topic>Body mass</topic><topic>Bowel disease</topic><topic>Chytridiomycosis</topic><topic>Chytridiomycota - immunology</topic><topic>Colonization</topic><topic>Communities</topic><topic>Conservation</topic><topic>Dermatologic agents</topic><topic>Dermatomycoses - immunology</topic><topic>Dermatomycoses - veterinary</topic><topic>Disease control</topic><topic>Disease Resistance</topic><topic>Ecological monitoring</topic><topic>Ecology</topic><topic>Environmental studies</topic><topic>Evolutionary biology</topic><topic>Frogs</topic><topic>Fungal diseases</topic><topic>Fungi</topic><topic>Gastrointestinal agents</topic><topic>Genomes</topic><topic>Host-Pathogen Interactions</topic><topic>Immune response</topic><topic>Immunity</topic><topic>Immunoregulation</topic><topic>Livestock</topic><topic>Medicine</topic><topic>Mesocosms</topic><topic>Microbial activity</topic><topic>Microbial drug resistance</topic><topic>Microbiota</topic><topic>Microbiota (Symbiotic organisms)</topic><topic>Microbiota - immunology</topic><topic>Microorganisms</topic><topic>Mucosa</topic><topic>Mycoses</topic><topic>National parks</topic><topic>Peptides</topic><topic>Prebiotics</topic><topic>Probiotics</topic><topic>Secretions</topic><topic>Skin</topic><topic>Skin - metabolism</topic><topic>Skin - microbiology</topic><topic>Skin care</topic><topic>Skin resistance</topic><topic>Studies</topic><topic>Transplants &amp; implants</topic><topic>Weight Loss - immunology</topic><topic>Wildlife</topic><topic>Wildlife conservation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Küng, Denise</creatorcontrib><creatorcontrib>Bigler, Laurent</creatorcontrib><creatorcontrib>Davis, Leyla R</creatorcontrib><creatorcontrib>Gratwicke, Brian</creatorcontrib><creatorcontrib>Griffith, Edgardo</creatorcontrib><creatorcontrib>Woodhams, Douglas C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Küng, Denise</au><au>Bigler, Laurent</au><au>Davis, Leyla R</au><au>Gratwicke, Brian</au><au>Griffith, Edgardo</au><au>Woodhams, Douglas C</au><au>Sturtevant, Joy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-01-29</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>e87101</spage><epage>e87101</epage><pages>e87101-e87101</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Microbial communities can augment host immune responses and probiotic therapies are under development to prevent or treat diseases of humans, crops, livestock, and wildlife including an emerging fungal disease of amphibians, chytridiomycosis. However, little is known about the stability of host-associated microbiota, or how the microbiota is structured by innate immune factors including antimicrobial peptides (AMPs) abundant in the skin secretions of many amphibians. Thus, conservation medicine including therapies targeting the skin will benefit from investigations of amphibian microbial ecology that provide a model for vertebrate host-symbiont interactions on mucosal surfaces. Here, we tested whether the cutaneous microbiota of Panamanian rocket frogs, Colostethus panamansis, was resistant to colonization or altered by treatment. Under semi-natural outdoor mesocosm conditions in Panama, we exposed frogs to one of three treatments including: (1) probiotic - the potentially beneficial bacterium Lysinibacillus fusiformis, (2) transplant - skin washes from the chytridiomycosis-resistant glass frog Espadarana prosoblepon, and (3) control - sterile water. Microbial assemblages were analyzed by a culture-independent T-RFLP analysis. We found that skin microbiota of C. panamansis was resistant to colonization and did not differ among treatments, but shifted through time in the mesocosms. We describe regulation of host AMPs that may function to maintain microbial community stability. Colonization resistance was metabolically costly and microbe-treated frogs lost 7-12% of body mass. The discovery of strong colonization resistance of skin microbiota suggests a well-regulated, rather than dynamic, host-symbiont relationship, and suggests that probiotic therapies aiming to enhance host immunity may require an approach that circumvents host mechanisms maintaining equilibrium in microbial communities.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24489847</pmid><doi>10.1371/journal.pone.0087101</doi><tpages>e87101</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-01, Vol.9 (1), p.e87101-e87101
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1492542198
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amphibia
Amphibian Proteins - physiology
Amphibians
Analysis
Animals
Antibiotics
Antimicrobial Cationic Peptides - physiology
Antimicrobial peptides
Anura - immunology
Anura - microbiology
Bacillus - physiology
Batrachochytrium dendrobatidis
Biology
Body mass
Bowel disease
Chytridiomycosis
Chytridiomycota - immunology
Colonization
Communities
Conservation
Dermatologic agents
Dermatomycoses - immunology
Dermatomycoses - veterinary
Disease control
Disease Resistance
Ecological monitoring
Ecology
Environmental studies
Evolutionary biology
Frogs
Fungal diseases
Fungi
Gastrointestinal agents
Genomes
Host-Pathogen Interactions
Immune response
Immunity
Immunoregulation
Livestock
Medicine
Mesocosms
Microbial activity
Microbial drug resistance
Microbiota
Microbiota (Symbiotic organisms)
Microbiota - immunology
Microorganisms
Mucosa
Mycoses
National parks
Peptides
Prebiotics
Probiotics
Secretions
Skin
Skin - metabolism
Skin - microbiology
Skin care
Skin resistance
Studies
Transplants & implants
Weight Loss - immunology
Wildlife
Wildlife conservation
title Stability of microbiota facilitated by host immune regulation: informing probiotic strategies to manage amphibian disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T21%3A51%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20of%20microbiota%20facilitated%20by%20host%20immune%20regulation:%20informing%20probiotic%20strategies%20to%20manage%20amphibian%20disease&rft.jtitle=PloS%20one&rft.au=K%C3%BCng,%20Denise&rft.date=2014-01-29&rft.volume=9&rft.issue=1&rft.spage=e87101&rft.epage=e87101&rft.pages=e87101-e87101&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0087101&rft_dat=%3Cgale_plos_%3EA478835539%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492542198&rft_id=info:pmid/24489847&rft_galeid=A478835539&rft_doaj_id=oai_doaj_org_article_badf098a2ccb47848af2d3df3cf8f119&rfr_iscdi=true