Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor

Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-01, Vol.9 (1), p.e86459
Hauptverfasser: Murakami, Akiko, Takahashi, Fumiyuki, Nurwidya, Fariz, Kobayashi, Isao, Minakata, Kunihiko, Hashimoto, Muneaki, Nara, Takeshi, Kato, Motoyasu, Tajima, Ken, Shimada, Naoko, Iwakami, Shin-ichiro, Moriyama, Mariko, Moriyama, Hiroyuki, Koizumi, Fumiaki, Takahashi, Kazuhisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page e86459
container_title PloS one
container_volume 9
creator Murakami, Akiko
Takahashi, Fumiyuki
Nurwidya, Fariz
Kobayashi, Isao
Minakata, Kunihiko
Hashimoto, Muneaki
Nara, Takeshi
Kato, Motoyasu
Tajima, Ken
Shimada, Naoko
Iwakami, Shin-ichiro
Moriyama, Mariko
Moriyama, Hiroyuki
Koizumi, Fumiaki
Takahashi, Kazuhisa
description Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation. NSCLC cell lines, PC9 and HCC827, which express the EGFR exon 19 deletion mutations, were exposed to high concentration of gefitinib under normoxic or hypoxic conditions. Seven days after gefitinib exposure, a small fraction of viable cells were detected, and these were referred to as "gefitinib-resistant persisters" (GRPs). CD133, Oct4, Sox2, Nanog, CXCR4, and ALDH1A1-all genes involved in stemness-were highly expressed in GRPs in PC9 and HCC827 cells, and PC9 GRPs exhibited a high potential for tumorigenicity in vivo. The expression of insulin-like growth factor 1 (IGF1) was also upregulated and IGF1 receptor (IGF1R) was activated on GRPs. Importantly, hypoxic exposure significantly increased sphere formation, reflecting the self-renewal capability, and the population of CD133- and Oct4-positive GRPs. Additionally, hypoxia upregulated IGF1 expression through hypoxia-inducible factor 1α (HIF1α), and markedly promoted the activation of IGF1R on GRPs. Knockdown of IGF1 expression significantly reduced phosphorylated IGF1R-expressing GRPs under hypoxic conditions. Finally, inhibition of HIF1α or IGF1R by specific inhibitors significantly decreased the population of CD133- and Oct4-positive GRPs, which were increased by hypoxia in PC9 and HCC827 cells. Collectively, these findings suggest that hypoxia increased the population of lung CSCs resistant to gefitinib in EGFR mutation-positive NSCLC by activating IGF1R. Targeting the IGF1R pathway may be a promising strategy for overcoming gefitinib resistance in EGFR mutation-positive NSCLC induced by lung CSCs and microenvironment factors such as tumor hypoxia.
doi_str_mv 10.1371/journal.pone.0086459
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1492273942</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478836006</galeid><doaj_id>oai_doaj_org_article_6fe64e8a410a4a28a601b63bfd11afbb</doaj_id><sourcerecordid>A478836006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-ec94fe7b0993d5b8e9f40def0228c3809a465164d8b05861ba1a8997fe7893553</originalsourceid><addsrcrecordid>eNqNkl9rFDEUxQdRbK1-A9GAIPiwazLJZJIXoRS1C4WC_15DJnMzkzo7WZNMbcEPb9adll1QkDzccPM7J5fLKYrnBC8JrcnbKz-FUQ_LjR9hibHgrJIPimMiabngJaYP9-5HxZMYrzCuqOD8cXFUMiZkXYrj4tf57cbfOI3caALoCBF1YF1yo2sWAaKLSY8JDdPYIaNHAwHFBGtkYBgiSn3wU9fnCkib5K51cn5E3ma7OA1uXAzuO6Au-J-pRzYjPiCCAhjY5OvT4pHVQ4Rncz0pvn54_-XsfHFx-XF1dnqxMHUl0gKMZBbqBktJ26oRIC3DLVhclsJQgaVmvCKctaLBleCk0UQLKeusEZJWFT0pXu58N4OPal5cVITJsqypZGUmVjui9fpKbYJb63CrvHbqT8OHTumQnBlAcQucgdCMYM10KTTHpOG0sS0h2jZN9no3_zY1a2gNjCno4cD08GV0ver8taISMyFYNng1GwT_Y4KY_jHyTHU6T-VG67OZWbto1CmrhaAcY56p5V-ofFpYO5OjY13uHwjeHAgyk-AmdXqKUa0-f_p_9vLbIft6j-1BD6mPfpi2gYmHINuBJvgYA9j7zRGstsm_24baJl_Nyc-yF_tbvxfdRZ3-Bj9iALA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1492273942</pqid></control><display><type>article</type><title>Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Murakami, Akiko ; Takahashi, Fumiyuki ; Nurwidya, Fariz ; Kobayashi, Isao ; Minakata, Kunihiko ; Hashimoto, Muneaki ; Nara, Takeshi ; Kato, Motoyasu ; Tajima, Ken ; Shimada, Naoko ; Iwakami, Shin-ichiro ; Moriyama, Mariko ; Moriyama, Hiroyuki ; Koizumi, Fumiaki ; Takahashi, Kazuhisa</creator><contributor>Filleur, Stephanie</contributor><creatorcontrib>Murakami, Akiko ; Takahashi, Fumiyuki ; Nurwidya, Fariz ; Kobayashi, Isao ; Minakata, Kunihiko ; Hashimoto, Muneaki ; Nara, Takeshi ; Kato, Motoyasu ; Tajima, Ken ; Shimada, Naoko ; Iwakami, Shin-ichiro ; Moriyama, Mariko ; Moriyama, Hiroyuki ; Koizumi, Fumiaki ; Takahashi, Kazuhisa ; Filleur, Stephanie</creatorcontrib><description>Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation. NSCLC cell lines, PC9 and HCC827, which express the EGFR exon 19 deletion mutations, were exposed to high concentration of gefitinib under normoxic or hypoxic conditions. Seven days after gefitinib exposure, a small fraction of viable cells were detected, and these were referred to as "gefitinib-resistant persisters" (GRPs). CD133, Oct4, Sox2, Nanog, CXCR4, and ALDH1A1-all genes involved in stemness-were highly expressed in GRPs in PC9 and HCC827 cells, and PC9 GRPs exhibited a high potential for tumorigenicity in vivo. The expression of insulin-like growth factor 1 (IGF1) was also upregulated and IGF1 receptor (IGF1R) was activated on GRPs. Importantly, hypoxic exposure significantly increased sphere formation, reflecting the self-renewal capability, and the population of CD133- and Oct4-positive GRPs. Additionally, hypoxia upregulated IGF1 expression through hypoxia-inducible factor 1α (HIF1α), and markedly promoted the activation of IGF1R on GRPs. Knockdown of IGF1 expression significantly reduced phosphorylated IGF1R-expressing GRPs under hypoxic conditions. Finally, inhibition of HIF1α or IGF1R by specific inhibitors significantly decreased the population of CD133- and Oct4-positive GRPs, which were increased by hypoxia in PC9 and HCC827 cells. Collectively, these findings suggest that hypoxia increased the population of lung CSCs resistant to gefitinib in EGFR mutation-positive NSCLC by activating IGF1R. Targeting the IGF1R pathway may be a promising strategy for overcoming gefitinib resistance in EGFR mutation-positive NSCLC induced by lung CSCs and microenvironment factors such as tumor hypoxia.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0086459</identifier><identifier>PMID: 24489728</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>AC133 Antigen ; Activation ; Animals ; Antigens, CD - metabolism ; Biology ; Cancer ; Cancer therapies ; Cancer treatment ; Carcinogenesis - drug effects ; Carcinogenesis - genetics ; Carcinogenesis - pathology ; Carcinoma, Non-Small-Cell Lung - drug therapy ; Carcinoma, Non-Small-Cell Lung - genetics ; Carcinoma, Non-Small-Cell Lung - metabolism ; Carcinoma, Non-Small-Cell Lung - pathology ; Cell Hypoxia - drug effects ; Cell Hypoxia - genetics ; Cell Line, Tumor ; Cell self-renewal ; Cell Separation ; Chemotherapy ; Clonal deletion ; CXCR4 protein ; Drug resistance ; Drug Resistance, Neoplasm - drug effects ; Drug Resistance, Neoplasm - genetics ; Epidermal growth factor ; Epidermal growth factor receptors ; Epidermal growth factors ; Exposure ; Gefitinib ; Gene Expression Regulation, Neoplastic - drug effects ; Gene Knockdown Techniques ; Genes ; Glycoproteins - metabolism ; Humans ; Hypoxia ; Hypoxia-Inducible Factor 1, alpha Subunit - antagonists &amp; inhibitors ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-inducible factor 1a ; Inhibitor drugs ; Insulin ; Insulin-like growth factor I ; Insulin-Like Growth Factor I - genetics ; Insulin-Like Growth Factor I - metabolism ; Insulin-like growth factors ; Kinases ; Lung cancer ; Lung diseases ; Lung Neoplasms - drug therapy ; Lung Neoplasms - genetics ; Lung Neoplasms - metabolism ; Lung Neoplasms - pathology ; Medical prognosis ; Medicine ; Mice, Inbred NOD ; Mutation ; Mutation - genetics ; Neoplasm Transplantation ; Neoplastic Stem Cells - metabolism ; Neoplastic Stem Cells - pathology ; Non-small cell lung cancer ; Non-small cell lung carcinoma ; Oct-4 protein ; Octamer Transcription Factor-3 - metabolism ; Parasitology ; Peptides - metabolism ; Pharmaceuticals ; Quinazolines - pharmacology ; Quinazolines - therapeutic use ; Receptor, Epidermal Growth Factor - genetics ; Receptor, IGF Type 1 - antagonists &amp; inhibitors ; Receptor, IGF Type 1 - genetics ; Receptor, IGF Type 1 - metabolism ; Spheroids, Cellular - drug effects ; Spheroids, Cellular - pathology ; Stem cells ; Targeted cancer therapy ; Tumorigenicity ; Tumors ; Up-Regulation - drug effects</subject><ispartof>PloS one, 2014-01, Vol.9 (1), p.e86459</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Murakami et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Murakami et al 2014 Murakami et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-ec94fe7b0993d5b8e9f40def0228c3809a465164d8b05861ba1a8997fe7893553</citedby><cites>FETCH-LOGICAL-c758t-ec94fe7b0993d5b8e9f40def0228c3809a465164d8b05861ba1a8997fe7893553</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904884/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904884/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24489728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Filleur, Stephanie</contributor><creatorcontrib>Murakami, Akiko</creatorcontrib><creatorcontrib>Takahashi, Fumiyuki</creatorcontrib><creatorcontrib>Nurwidya, Fariz</creatorcontrib><creatorcontrib>Kobayashi, Isao</creatorcontrib><creatorcontrib>Minakata, Kunihiko</creatorcontrib><creatorcontrib>Hashimoto, Muneaki</creatorcontrib><creatorcontrib>Nara, Takeshi</creatorcontrib><creatorcontrib>Kato, Motoyasu</creatorcontrib><creatorcontrib>Tajima, Ken</creatorcontrib><creatorcontrib>Shimada, Naoko</creatorcontrib><creatorcontrib>Iwakami, Shin-ichiro</creatorcontrib><creatorcontrib>Moriyama, Mariko</creatorcontrib><creatorcontrib>Moriyama, Hiroyuki</creatorcontrib><creatorcontrib>Koizumi, Fumiaki</creatorcontrib><creatorcontrib>Takahashi, Kazuhisa</creatorcontrib><title>Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation. NSCLC cell lines, PC9 and HCC827, which express the EGFR exon 19 deletion mutations, were exposed to high concentration of gefitinib under normoxic or hypoxic conditions. Seven days after gefitinib exposure, a small fraction of viable cells were detected, and these were referred to as "gefitinib-resistant persisters" (GRPs). CD133, Oct4, Sox2, Nanog, CXCR4, and ALDH1A1-all genes involved in stemness-were highly expressed in GRPs in PC9 and HCC827 cells, and PC9 GRPs exhibited a high potential for tumorigenicity in vivo. The expression of insulin-like growth factor 1 (IGF1) was also upregulated and IGF1 receptor (IGF1R) was activated on GRPs. Importantly, hypoxic exposure significantly increased sphere formation, reflecting the self-renewal capability, and the population of CD133- and Oct4-positive GRPs. Additionally, hypoxia upregulated IGF1 expression through hypoxia-inducible factor 1α (HIF1α), and markedly promoted the activation of IGF1R on GRPs. Knockdown of IGF1 expression significantly reduced phosphorylated IGF1R-expressing GRPs under hypoxic conditions. Finally, inhibition of HIF1α or IGF1R by specific inhibitors significantly decreased the population of CD133- and Oct4-positive GRPs, which were increased by hypoxia in PC9 and HCC827 cells. Collectively, these findings suggest that hypoxia increased the population of lung CSCs resistant to gefitinib in EGFR mutation-positive NSCLC by activating IGF1R. Targeting the IGF1R pathway may be a promising strategy for overcoming gefitinib resistance in EGFR mutation-positive NSCLC induced by lung CSCs and microenvironment factors such as tumor hypoxia.</description><subject>AC133 Antigen</subject><subject>Activation</subject><subject>Animals</subject><subject>Antigens, CD - metabolism</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Cancer treatment</subject><subject>Carcinogenesis - drug effects</subject><subject>Carcinogenesis - genetics</subject><subject>Carcinogenesis - pathology</subject><subject>Carcinoma, Non-Small-Cell Lung - drug therapy</subject><subject>Carcinoma, Non-Small-Cell Lung - genetics</subject><subject>Carcinoma, Non-Small-Cell Lung - metabolism</subject><subject>Carcinoma, Non-Small-Cell Lung - pathology</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Hypoxia - genetics</subject><subject>Cell Line, Tumor</subject><subject>Cell self-renewal</subject><subject>Cell Separation</subject><subject>Chemotherapy</subject><subject>Clonal deletion</subject><subject>CXCR4 protein</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm - drug effects</subject><subject>Drug Resistance, Neoplasm - genetics</subject><subject>Epidermal growth factor</subject><subject>Epidermal growth factor receptors</subject><subject>Epidermal growth factors</subject><subject>Exposure</subject><subject>Gefitinib</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>Gene Knockdown Techniques</subject><subject>Genes</subject><subject>Glycoproteins - metabolism</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - antagonists &amp; inhibitors</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Inhibitor drugs</subject><subject>Insulin</subject><subject>Insulin-like growth factor I</subject><subject>Insulin-Like Growth Factor I - genetics</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Insulin-like growth factors</subject><subject>Kinases</subject><subject>Lung cancer</subject><subject>Lung diseases</subject><subject>Lung Neoplasms - drug therapy</subject><subject>Lung Neoplasms - genetics</subject><subject>Lung Neoplasms - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Mice, Inbred NOD</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Neoplasm Transplantation</subject><subject>Neoplastic Stem Cells - metabolism</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Non-small cell lung cancer</subject><subject>Non-small cell lung carcinoma</subject><subject>Oct-4 protein</subject><subject>Octamer Transcription Factor-3 - metabolism</subject><subject>Parasitology</subject><subject>Peptides - metabolism</subject><subject>Pharmaceuticals</subject><subject>Quinazolines - pharmacology</subject><subject>Quinazolines - therapeutic use</subject><subject>Receptor, Epidermal Growth Factor - genetics</subject><subject>Receptor, IGF Type 1 - antagonists &amp; inhibitors</subject><subject>Receptor, IGF Type 1 - genetics</subject><subject>Receptor, IGF Type 1 - metabolism</subject><subject>Spheroids, Cellular - drug effects</subject><subject>Spheroids, Cellular - pathology</subject><subject>Stem cells</subject><subject>Targeted cancer therapy</subject><subject>Tumorigenicity</subject><subject>Tumors</subject><subject>Up-Regulation - drug effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl9rFDEUxQdRbK1-A9GAIPiwazLJZJIXoRS1C4WC_15DJnMzkzo7WZNMbcEPb9adll1QkDzccPM7J5fLKYrnBC8JrcnbKz-FUQ_LjR9hibHgrJIPimMiabngJaYP9-5HxZMYrzCuqOD8cXFUMiZkXYrj4tf57cbfOI3caALoCBF1YF1yo2sWAaKLSY8JDdPYIaNHAwHFBGtkYBgiSn3wU9fnCkib5K51cn5E3ma7OA1uXAzuO6Au-J-pRzYjPiCCAhjY5OvT4pHVQ4Rncz0pvn54_-XsfHFx-XF1dnqxMHUl0gKMZBbqBktJ26oRIC3DLVhclsJQgaVmvCKctaLBleCk0UQLKeusEZJWFT0pXu58N4OPal5cVITJsqypZGUmVjui9fpKbYJb63CrvHbqT8OHTumQnBlAcQucgdCMYM10KTTHpOG0sS0h2jZN9no3_zY1a2gNjCno4cD08GV0ver8taISMyFYNng1GwT_Y4KY_jHyTHU6T-VG67OZWbto1CmrhaAcY56p5V-ofFpYO5OjY13uHwjeHAgyk-AmdXqKUa0-f_p_9vLbIft6j-1BD6mPfpi2gYmHINuBJvgYA9j7zRGstsm_24baJl_Nyc-yF_tbvxfdRZ3-Bj9iALA</recordid><startdate>20140128</startdate><enddate>20140128</enddate><creator>Murakami, Akiko</creator><creator>Takahashi, Fumiyuki</creator><creator>Nurwidya, Fariz</creator><creator>Kobayashi, Isao</creator><creator>Minakata, Kunihiko</creator><creator>Hashimoto, Muneaki</creator><creator>Nara, Takeshi</creator><creator>Kato, Motoyasu</creator><creator>Tajima, Ken</creator><creator>Shimada, Naoko</creator><creator>Iwakami, Shin-ichiro</creator><creator>Moriyama, Mariko</creator><creator>Moriyama, Hiroyuki</creator><creator>Koizumi, Fumiaki</creator><creator>Takahashi, Kazuhisa</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140128</creationdate><title>Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor</title><author>Murakami, Akiko ; Takahashi, Fumiyuki ; Nurwidya, Fariz ; Kobayashi, Isao ; Minakata, Kunihiko ; Hashimoto, Muneaki ; Nara, Takeshi ; Kato, Motoyasu ; Tajima, Ken ; Shimada, Naoko ; Iwakami, Shin-ichiro ; Moriyama, Mariko ; Moriyama, Hiroyuki ; Koizumi, Fumiaki ; Takahashi, Kazuhisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-ec94fe7b0993d5b8e9f40def0228c3809a465164d8b05861ba1a8997fe7893553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>AC133 Antigen</topic><topic>Activation</topic><topic>Animals</topic><topic>Antigens, CD - metabolism</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Cancer treatment</topic><topic>Carcinogenesis - drug effects</topic><topic>Carcinogenesis - genetics</topic><topic>Carcinogenesis - pathology</topic><topic>Carcinoma, Non-Small-Cell Lung - drug therapy</topic><topic>Carcinoma, Non-Small-Cell Lung - genetics</topic><topic>Carcinoma, Non-Small-Cell Lung - metabolism</topic><topic>Carcinoma, Non-Small-Cell Lung - pathology</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Hypoxia - genetics</topic><topic>Cell Line, Tumor</topic><topic>Cell self-renewal</topic><topic>Cell Separation</topic><topic>Chemotherapy</topic><topic>Clonal deletion</topic><topic>CXCR4 protein</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm - drug effects</topic><topic>Drug Resistance, Neoplasm - genetics</topic><topic>Epidermal growth factor</topic><topic>Epidermal growth factor receptors</topic><topic>Epidermal growth factors</topic><topic>Exposure</topic><topic>Gefitinib</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>Gene Knockdown Techniques</topic><topic>Genes</topic><topic>Glycoproteins - metabolism</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - antagonists &amp; inhibitors</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Inhibitor drugs</topic><topic>Insulin</topic><topic>Insulin-like growth factor I</topic><topic>Insulin-Like Growth Factor I - genetics</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Insulin-like growth factors</topic><topic>Kinases</topic><topic>Lung cancer</topic><topic>Lung diseases</topic><topic>Lung Neoplasms - drug therapy</topic><topic>Lung Neoplasms - genetics</topic><topic>Lung Neoplasms - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Mice, Inbred NOD</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Neoplasm Transplantation</topic><topic>Neoplastic Stem Cells - metabolism</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Non-small cell lung cancer</topic><topic>Non-small cell lung carcinoma</topic><topic>Oct-4 protein</topic><topic>Octamer Transcription Factor-3 - metabolism</topic><topic>Parasitology</topic><topic>Peptides - metabolism</topic><topic>Pharmaceuticals</topic><topic>Quinazolines - pharmacology</topic><topic>Quinazolines - therapeutic use</topic><topic>Receptor, Epidermal Growth Factor - genetics</topic><topic>Receptor, IGF Type 1 - antagonists &amp; inhibitors</topic><topic>Receptor, IGF Type 1 - genetics</topic><topic>Receptor, IGF Type 1 - metabolism</topic><topic>Spheroids, Cellular - drug effects</topic><topic>Spheroids, Cellular - pathology</topic><topic>Stem cells</topic><topic>Targeted cancer therapy</topic><topic>Tumorigenicity</topic><topic>Tumors</topic><topic>Up-Regulation - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murakami, Akiko</creatorcontrib><creatorcontrib>Takahashi, Fumiyuki</creatorcontrib><creatorcontrib>Nurwidya, Fariz</creatorcontrib><creatorcontrib>Kobayashi, Isao</creatorcontrib><creatorcontrib>Minakata, Kunihiko</creatorcontrib><creatorcontrib>Hashimoto, Muneaki</creatorcontrib><creatorcontrib>Nara, Takeshi</creatorcontrib><creatorcontrib>Kato, Motoyasu</creatorcontrib><creatorcontrib>Tajima, Ken</creatorcontrib><creatorcontrib>Shimada, Naoko</creatorcontrib><creatorcontrib>Iwakami, Shin-ichiro</creatorcontrib><creatorcontrib>Moriyama, Mariko</creatorcontrib><creatorcontrib>Moriyama, Hiroyuki</creatorcontrib><creatorcontrib>Koizumi, Fumiaki</creatorcontrib><creatorcontrib>Takahashi, Kazuhisa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murakami, Akiko</au><au>Takahashi, Fumiyuki</au><au>Nurwidya, Fariz</au><au>Kobayashi, Isao</au><au>Minakata, Kunihiko</au><au>Hashimoto, Muneaki</au><au>Nara, Takeshi</au><au>Kato, Motoyasu</au><au>Tajima, Ken</au><au>Shimada, Naoko</au><au>Iwakami, Shin-ichiro</au><au>Moriyama, Mariko</au><au>Moriyama, Hiroyuki</au><au>Koizumi, Fumiaki</au><au>Takahashi, Kazuhisa</au><au>Filleur, Stephanie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-01-28</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>e86459</spage><pages>e86459-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Accumulating evidence indicates that a small population of cancer stem cells (CSCs) is involved in intrinsic resistance to cancer treatment. The hypoxic microenvironment is an important stem cell niche that promotes the persistence of CSCs in tumors. Our aim here was to elucidate the role of hypoxia and CSCs in the resistance to gefitinib in non-small cell lung cancer (NSCLC) with activating epidermal growth factor receptor (EGFR) mutation. NSCLC cell lines, PC9 and HCC827, which express the EGFR exon 19 deletion mutations, were exposed to high concentration of gefitinib under normoxic or hypoxic conditions. Seven days after gefitinib exposure, a small fraction of viable cells were detected, and these were referred to as "gefitinib-resistant persisters" (GRPs). CD133, Oct4, Sox2, Nanog, CXCR4, and ALDH1A1-all genes involved in stemness-were highly expressed in GRPs in PC9 and HCC827 cells, and PC9 GRPs exhibited a high potential for tumorigenicity in vivo. The expression of insulin-like growth factor 1 (IGF1) was also upregulated and IGF1 receptor (IGF1R) was activated on GRPs. Importantly, hypoxic exposure significantly increased sphere formation, reflecting the self-renewal capability, and the population of CD133- and Oct4-positive GRPs. Additionally, hypoxia upregulated IGF1 expression through hypoxia-inducible factor 1α (HIF1α), and markedly promoted the activation of IGF1R on GRPs. Knockdown of IGF1 expression significantly reduced phosphorylated IGF1R-expressing GRPs under hypoxic conditions. Finally, inhibition of HIF1α or IGF1R by specific inhibitors significantly decreased the population of CD133- and Oct4-positive GRPs, which were increased by hypoxia in PC9 and HCC827 cells. Collectively, these findings suggest that hypoxia increased the population of lung CSCs resistant to gefitinib in EGFR mutation-positive NSCLC by activating IGF1R. Targeting the IGF1R pathway may be a promising strategy for overcoming gefitinib resistance in EGFR mutation-positive NSCLC induced by lung CSCs and microenvironment factors such as tumor hypoxia.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24489728</pmid><doi>10.1371/journal.pone.0086459</doi><tpages>e86459</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-01, Vol.9 (1), p.e86459
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1492273942
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects AC133 Antigen
Activation
Animals
Antigens, CD - metabolism
Biology
Cancer
Cancer therapies
Cancer treatment
Carcinogenesis - drug effects
Carcinogenesis - genetics
Carcinogenesis - pathology
Carcinoma, Non-Small-Cell Lung - drug therapy
Carcinoma, Non-Small-Cell Lung - genetics
Carcinoma, Non-Small-Cell Lung - metabolism
Carcinoma, Non-Small-Cell Lung - pathology
Cell Hypoxia - drug effects
Cell Hypoxia - genetics
Cell Line, Tumor
Cell self-renewal
Cell Separation
Chemotherapy
Clonal deletion
CXCR4 protein
Drug resistance
Drug Resistance, Neoplasm - drug effects
Drug Resistance, Neoplasm - genetics
Epidermal growth factor
Epidermal growth factor receptors
Epidermal growth factors
Exposure
Gefitinib
Gene Expression Regulation, Neoplastic - drug effects
Gene Knockdown Techniques
Genes
Glycoproteins - metabolism
Humans
Hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit - antagonists & inhibitors
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Hypoxia-inducible factor 1a
Inhibitor drugs
Insulin
Insulin-like growth factor I
Insulin-Like Growth Factor I - genetics
Insulin-Like Growth Factor I - metabolism
Insulin-like growth factors
Kinases
Lung cancer
Lung diseases
Lung Neoplasms - drug therapy
Lung Neoplasms - genetics
Lung Neoplasms - metabolism
Lung Neoplasms - pathology
Medical prognosis
Medicine
Mice, Inbred NOD
Mutation
Mutation - genetics
Neoplasm Transplantation
Neoplastic Stem Cells - metabolism
Neoplastic Stem Cells - pathology
Non-small cell lung cancer
Non-small cell lung carcinoma
Oct-4 protein
Octamer Transcription Factor-3 - metabolism
Parasitology
Peptides - metabolism
Pharmaceuticals
Quinazolines - pharmacology
Quinazolines - therapeutic use
Receptor, Epidermal Growth Factor - genetics
Receptor, IGF Type 1 - antagonists & inhibitors
Receptor, IGF Type 1 - genetics
Receptor, IGF Type 1 - metabolism
Spheroids, Cellular - drug effects
Spheroids, Cellular - pathology
Stem cells
Targeted cancer therapy
Tumorigenicity
Tumors
Up-Regulation - drug effects
title Hypoxia increases gefitinib-resistant lung cancer stem cells through the activation of insulin-like growth factor 1 receptor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A00%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hypoxia%20increases%20gefitinib-resistant%20lung%20cancer%20stem%20cells%20through%20the%20activation%20of%20insulin-like%20growth%20factor%201%20receptor&rft.jtitle=PloS%20one&rft.au=Murakami,%20Akiko&rft.date=2014-01-28&rft.volume=9&rft.issue=1&rft.spage=e86459&rft.pages=e86459-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0086459&rft_dat=%3Cgale_plos_%3EA478836006%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1492273942&rft_id=info:pmid/24489728&rft_galeid=A478836006&rft_doaj_id=oai_doaj_org_article_6fe64e8a410a4a28a601b63bfd11afbb&rfr_iscdi=true