Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease
Understanding how pathogenic fungi adapt to host plant cells is of major concern to securing global food production. The hemibiotrophic rice blast fungus Magnaporthe oryzae, cause of the most serious disease of cultivated rice, colonizes leaf cells asymptomatically as a biotroph for 4-5 days in susc...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-01, Vol.9 (1), p.e87300-e87300 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e87300 |
---|---|
container_issue | 1 |
container_start_page | e87300 |
container_title | PloS one |
container_volume | 9 |
creator | Fernandez, Jessie Wilson, Richard A |
description | Understanding how pathogenic fungi adapt to host plant cells is of major concern to securing global food production. The hemibiotrophic rice blast fungus Magnaporthe oryzae, cause of the most serious disease of cultivated rice, colonizes leaf cells asymptomatically as a biotroph for 4-5 days in susceptible rice cultivars before entering its destructive necrotrophic phase. During the biotrophic growth stage, M. oryzae remains undetected in the plant while acquiring nutrients and growing cell-to-cell. Which fungal processes facilitate in planta growth and development are still being elucidated. Here, we used gene functional analysis to show how components of the NADPH-requiring glutathione and thioredoxin antioxidation systems of M. oryzae contribute to disease. Loss of glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes resulted in strains severely attenuated in their ability to grow in rice cells and that failed to produce spreading necrotic lesions on the leaf surface. Glutathione reductase, but not thioredoxin reductase or thioredoxin peroxidase, was shown to be required for neutralizing plant generated reactive oxygen species (ROS). The thioredoxin proteins, but not glutathione reductase, were shown to contribute to cell-wall integrity. Furthermore, glutathione and thioredoxin gene expression, under axenic growth conditions, was dependent on both the presence of glucose and the M. oryzae sugar/ NADPH sensor Tps1, thereby suggesting how glucose availability, NADPH production and antioxidation might be connected. Taken together, this work identifies components of the fungal glutathione and thioredoxin antioxidation systems as determinants of rice blast disease that act to facilitate biotrophic colonization of host cells by M. oryzae. |
doi_str_mv | 10.1371/journal.pone.0087300 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1491439111</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478845625</galeid><doaj_id>oai_doaj_org_article_6a9a857e4c554940866d1927ca1d6b38</doaj_id><sourcerecordid>A478845625</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6730-f6db7f5a47314313b0b9d3da1506d2857fc37ccbc86d8faeb8bd3b2aff1d8f2d3</originalsourceid><addsrcrecordid>eNqNk22L1DAQx4so3nn6DUQLgii4a9K0TftGOBYfFk4OfHobpsm0zdFt1iSVu_s6flHT3d65lXshfZFm5jf_yUwyUfSUkiVlnL69MIPtoVtuTY9LQgrOCLkXHdOSJYs8Iez-wf9R9Mi5C0IyVuT5w-goSVOeJTk_jn6vWrAgPVp9rfsmtqZDF9fGxr7FuOkGD77VIUVsUQ3Sg8M38WgJW3Op-7_mGHo182zRhlUF1wJ7adQo32Af5E0df4amh62xYxZjr64BYzXY3Qm0xLjqwPlYaYch_HH0oIbO4ZNpPYm-f3j_bfVpcXb-cb06PVvIPBS_qHNV8TqDlDOaMsoqUpWKKaAZyVVSZLyWjEtZySJXRQ1YFZViVQJ1TcM-Uewker7X3XbGiam_TtC0DHolpTQQ6z2hDFyIrdUbsFfCgBY7g7GNAOu17FDkUELIianMsrRMSWi8omXCJVCVV6wIWu-mbEO1QSWx9xa6mejc0-tWNOaXYCWhPM2CwKtJwJqfAzovNtpJ7Dro0Qy7cyecMsZZQF_8g95d3UQ1EArQfW1CXjmKitOUF0Wa5cmYdnkHFT6FGy3DS6l1sM8CXs8CAuPx0jcwOCfWX7_8P3v-Y86-PGBbhM63zoQXG56rm4PpHpTWOGexvm0yJWKcpZtuiHGWxDRLIezZ4QXdBt0MD_sD_aceJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1491439111</pqid></control><display><type>article</type><title>Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Fernandez, Jessie ; Wilson, Richard A</creator><contributor>Yu, Jae-Hyuk</contributor><creatorcontrib>Fernandez, Jessie ; Wilson, Richard A ; Yu, Jae-Hyuk</creatorcontrib><description>Understanding how pathogenic fungi adapt to host plant cells is of major concern to securing global food production. The hemibiotrophic rice blast fungus Magnaporthe oryzae, cause of the most serious disease of cultivated rice, colonizes leaf cells asymptomatically as a biotroph for 4-5 days in susceptible rice cultivars before entering its destructive necrotrophic phase. During the biotrophic growth stage, M. oryzae remains undetected in the plant while acquiring nutrients and growing cell-to-cell. Which fungal processes facilitate in planta growth and development are still being elucidated. Here, we used gene functional analysis to show how components of the NADPH-requiring glutathione and thioredoxin antioxidation systems of M. oryzae contribute to disease. Loss of glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes resulted in strains severely attenuated in their ability to grow in rice cells and that failed to produce spreading necrotic lesions on the leaf surface. Glutathione reductase, but not thioredoxin reductase or thioredoxin peroxidase, was shown to be required for neutralizing plant generated reactive oxygen species (ROS). The thioredoxin proteins, but not glutathione reductase, were shown to contribute to cell-wall integrity. Furthermore, glutathione and thioredoxin gene expression, under axenic growth conditions, was dependent on both the presence of glucose and the M. oryzae sugar/ NADPH sensor Tps1, thereby suggesting how glucose availability, NADPH production and antioxidation might be connected. Taken together, this work identifies components of the fungal glutathione and thioredoxin antioxidation systems as determinants of rice blast disease that act to facilitate biotrophic colonization of host cells by M. oryzae.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0087300</identifier><identifier>PMID: 24475267</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Biology ; Cell walls ; Colonization ; Cultivars ; Cultivation ; Disease ; Enzymes ; Explosions ; Food plants ; Food production ; Functional analysis ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungi ; Gene expression ; Gene Expression Regulation, Fungal ; Genes ; Genetic research ; Genomes ; Genomics ; Glucose ; Glutathione ; Glutathione reductase ; Glutathione Reductase - deficiency ; Glutathione Reductase - genetics ; Grain cultivation ; Growth conditions ; Growth stage ; Host plants ; Host-Pathogen Interactions ; Infections ; Leaves ; Lesions ; Magnaporthe - enzymology ; Magnaporthe - genetics ; Magnaporthe - pathogenicity ; Magnaporthe grisea ; Magnaporthe oryzae ; Metabolism ; NADP ; NADP - metabolism ; Nutrients ; Oryza ; Oryza - microbiology ; Oxidative stress ; Oxygen ; Peroxidase ; Peroxiredoxins - deficiency ; Peroxiredoxins - genetics ; Plant cells ; Plant diseases ; Plant Diseases - microbiology ; Plant Leaves - microbiology ; Plant pathology ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Rice ; Rice blast ; Rice blast disease ; Saccharomyces cerevisiae ; Sugar ; Thiols ; Thioredoxin ; Thioredoxin peroxidase ; Thioredoxin-Disulfide Reductase - deficiency ; Thioredoxin-Disulfide Reductase - genetics ; Thioredoxins</subject><ispartof>PloS one, 2014-01, Vol.9 (1), p.e87300-e87300</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Fernandez, Wilson. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Fernandez, Wilson 2014 Fernandez, Wilson</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6730-f6db7f5a47314313b0b9d3da1506d2857fc37ccbc86d8faeb8bd3b2aff1d8f2d3</citedby><cites>FETCH-LOGICAL-c6730-f6db7f5a47314313b0b9d3da1506d2857fc37ccbc86d8faeb8bd3b2aff1d8f2d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901745/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901745/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24475267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yu, Jae-Hyuk</contributor><creatorcontrib>Fernandez, Jessie</creatorcontrib><creatorcontrib>Wilson, Richard A</creatorcontrib><title>Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Understanding how pathogenic fungi adapt to host plant cells is of major concern to securing global food production. The hemibiotrophic rice blast fungus Magnaporthe oryzae, cause of the most serious disease of cultivated rice, colonizes leaf cells asymptomatically as a biotroph for 4-5 days in susceptible rice cultivars before entering its destructive necrotrophic phase. During the biotrophic growth stage, M. oryzae remains undetected in the plant while acquiring nutrients and growing cell-to-cell. Which fungal processes facilitate in planta growth and development are still being elucidated. Here, we used gene functional analysis to show how components of the NADPH-requiring glutathione and thioredoxin antioxidation systems of M. oryzae contribute to disease. Loss of glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes resulted in strains severely attenuated in their ability to grow in rice cells and that failed to produce spreading necrotic lesions on the leaf surface. Glutathione reductase, but not thioredoxin reductase or thioredoxin peroxidase, was shown to be required for neutralizing plant generated reactive oxygen species (ROS). The thioredoxin proteins, but not glutathione reductase, were shown to contribute to cell-wall integrity. Furthermore, glutathione and thioredoxin gene expression, under axenic growth conditions, was dependent on both the presence of glucose and the M. oryzae sugar/ NADPH sensor Tps1, thereby suggesting how glucose availability, NADPH production and antioxidation might be connected. Taken together, this work identifies components of the fungal glutathione and thioredoxin antioxidation systems as determinants of rice blast disease that act to facilitate biotrophic colonization of host cells by M. oryzae.</description><subject>Agriculture</subject><subject>Biology</subject><subject>Cell walls</subject><subject>Colonization</subject><subject>Cultivars</subject><subject>Cultivation</subject><subject>Disease</subject><subject>Enzymes</subject><subject>Explosions</subject><subject>Food plants</subject><subject>Food production</subject><subject>Functional analysis</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungi</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glucose</subject><subject>Glutathione</subject><subject>Glutathione reductase</subject><subject>Glutathione Reductase - deficiency</subject><subject>Glutathione Reductase - genetics</subject><subject>Grain cultivation</subject><subject>Growth conditions</subject><subject>Growth stage</subject><subject>Host plants</subject><subject>Host-Pathogen Interactions</subject><subject>Infections</subject><subject>Leaves</subject><subject>Lesions</subject><subject>Magnaporthe - enzymology</subject><subject>Magnaporthe - genetics</subject><subject>Magnaporthe - pathogenicity</subject><subject>Magnaporthe grisea</subject><subject>Magnaporthe oryzae</subject><subject>Metabolism</subject><subject>NADP</subject><subject>NADP - metabolism</subject><subject>Nutrients</subject><subject>Oryza</subject><subject>Oryza - microbiology</subject><subject>Oxidative stress</subject><subject>Oxygen</subject><subject>Peroxidase</subject><subject>Peroxiredoxins - deficiency</subject><subject>Peroxiredoxins - genetics</subject><subject>Plant cells</subject><subject>Plant diseases</subject><subject>Plant Diseases - microbiology</subject><subject>Plant Leaves - microbiology</subject><subject>Plant pathology</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Rice</subject><subject>Rice blast</subject><subject>Rice blast disease</subject><subject>Saccharomyces cerevisiae</subject><subject>Sugar</subject><subject>Thiols</subject><subject>Thioredoxin</subject><subject>Thioredoxin peroxidase</subject><subject>Thioredoxin-Disulfide Reductase - deficiency</subject><subject>Thioredoxin-Disulfide Reductase - genetics</subject><subject>Thioredoxins</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk22L1DAQx4so3nn6DUQLgii4a9K0TftGOBYfFk4OfHobpsm0zdFt1iSVu_s6flHT3d65lXshfZFm5jf_yUwyUfSUkiVlnL69MIPtoVtuTY9LQgrOCLkXHdOSJYs8Iez-wf9R9Mi5C0IyVuT5w-goSVOeJTk_jn6vWrAgPVp9rfsmtqZDF9fGxr7FuOkGD77VIUVsUQ3Sg8M38WgJW3Op-7_mGHo182zRhlUF1wJ7adQo32Af5E0df4amh62xYxZjr64BYzXY3Qm0xLjqwPlYaYch_HH0oIbO4ZNpPYm-f3j_bfVpcXb-cb06PVvIPBS_qHNV8TqDlDOaMsoqUpWKKaAZyVVSZLyWjEtZySJXRQ1YFZViVQJ1TcM-Uewker7X3XbGiam_TtC0DHolpTQQ6z2hDFyIrdUbsFfCgBY7g7GNAOu17FDkUELIianMsrRMSWi8omXCJVCVV6wIWu-mbEO1QSWx9xa6mejc0-tWNOaXYCWhPM2CwKtJwJqfAzovNtpJ7Dro0Qy7cyecMsZZQF_8g95d3UQ1EArQfW1CXjmKitOUF0Wa5cmYdnkHFT6FGy3DS6l1sM8CXs8CAuPx0jcwOCfWX7_8P3v-Y86-PGBbhM63zoQXG56rm4PpHpTWOGexvm0yJWKcpZtuiHGWxDRLIezZ4QXdBt0MD_sD_aceJg</recordid><startdate>20140124</startdate><enddate>20140124</enddate><creator>Fernandez, Jessie</creator><creator>Wilson, Richard A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140124</creationdate><title>Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease</title><author>Fernandez, Jessie ; Wilson, Richard A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6730-f6db7f5a47314313b0b9d3da1506d2857fc37ccbc86d8faeb8bd3b2aff1d8f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture</topic><topic>Biology</topic><topic>Cell walls</topic><topic>Colonization</topic><topic>Cultivars</topic><topic>Cultivation</topic><topic>Disease</topic><topic>Enzymes</topic><topic>Explosions</topic><topic>Food plants</topic><topic>Food production</topic><topic>Functional analysis</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungi</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glucose</topic><topic>Glutathione</topic><topic>Glutathione reductase</topic><topic>Glutathione Reductase - deficiency</topic><topic>Glutathione Reductase - genetics</topic><topic>Grain cultivation</topic><topic>Growth conditions</topic><topic>Growth stage</topic><topic>Host plants</topic><topic>Host-Pathogen Interactions</topic><topic>Infections</topic><topic>Leaves</topic><topic>Lesions</topic><topic>Magnaporthe - enzymology</topic><topic>Magnaporthe - genetics</topic><topic>Magnaporthe - pathogenicity</topic><topic>Magnaporthe grisea</topic><topic>Magnaporthe oryzae</topic><topic>Metabolism</topic><topic>NADP</topic><topic>NADP - metabolism</topic><topic>Nutrients</topic><topic>Oryza</topic><topic>Oryza - microbiology</topic><topic>Oxidative stress</topic><topic>Oxygen</topic><topic>Peroxidase</topic><topic>Peroxiredoxins - deficiency</topic><topic>Peroxiredoxins - genetics</topic><topic>Plant cells</topic><topic>Plant diseases</topic><topic>Plant Diseases - microbiology</topic><topic>Plant Leaves - microbiology</topic><topic>Plant pathology</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Rice</topic><topic>Rice blast</topic><topic>Rice blast disease</topic><topic>Saccharomyces cerevisiae</topic><topic>Sugar</topic><topic>Thiols</topic><topic>Thioredoxin</topic><topic>Thioredoxin peroxidase</topic><topic>Thioredoxin-Disulfide Reductase - deficiency</topic><topic>Thioredoxin-Disulfide Reductase - genetics</topic><topic>Thioredoxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandez, Jessie</creatorcontrib><creatorcontrib>Wilson, Richard A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandez, Jessie</au><au>Wilson, Richard A</au><au>Yu, Jae-Hyuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-01-24</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>e87300</spage><epage>e87300</epage><pages>e87300-e87300</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Understanding how pathogenic fungi adapt to host plant cells is of major concern to securing global food production. The hemibiotrophic rice blast fungus Magnaporthe oryzae, cause of the most serious disease of cultivated rice, colonizes leaf cells asymptomatically as a biotroph for 4-5 days in susceptible rice cultivars before entering its destructive necrotrophic phase. During the biotrophic growth stage, M. oryzae remains undetected in the plant while acquiring nutrients and growing cell-to-cell. Which fungal processes facilitate in planta growth and development are still being elucidated. Here, we used gene functional analysis to show how components of the NADPH-requiring glutathione and thioredoxin antioxidation systems of M. oryzae contribute to disease. Loss of glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes resulted in strains severely attenuated in their ability to grow in rice cells and that failed to produce spreading necrotic lesions on the leaf surface. Glutathione reductase, but not thioredoxin reductase or thioredoxin peroxidase, was shown to be required for neutralizing plant generated reactive oxygen species (ROS). The thioredoxin proteins, but not glutathione reductase, were shown to contribute to cell-wall integrity. Furthermore, glutathione and thioredoxin gene expression, under axenic growth conditions, was dependent on both the presence of glucose and the M. oryzae sugar/ NADPH sensor Tps1, thereby suggesting how glucose availability, NADPH production and antioxidation might be connected. Taken together, this work identifies components of the fungal glutathione and thioredoxin antioxidation systems as determinants of rice blast disease that act to facilitate biotrophic colonization of host cells by M. oryzae.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24475267</pmid><doi>10.1371/journal.pone.0087300</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-01, Vol.9 (1), p.e87300-e87300 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1491439111 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agriculture Biology Cell walls Colonization Cultivars Cultivation Disease Enzymes Explosions Food plants Food production Functional analysis Fungal Proteins - genetics Fungal Proteins - metabolism Fungi Gene expression Gene Expression Regulation, Fungal Genes Genetic research Genomes Genomics Glucose Glutathione Glutathione reductase Glutathione Reductase - deficiency Glutathione Reductase - genetics Grain cultivation Growth conditions Growth stage Host plants Host-Pathogen Interactions Infections Leaves Lesions Magnaporthe - enzymology Magnaporthe - genetics Magnaporthe - pathogenicity Magnaporthe grisea Magnaporthe oryzae Metabolism NADP NADP - metabolism Nutrients Oryza Oryza - microbiology Oxidative stress Oxygen Peroxidase Peroxiredoxins - deficiency Peroxiredoxins - genetics Plant cells Plant diseases Plant Diseases - microbiology Plant Leaves - microbiology Plant pathology Proteins Reactive oxygen species Reactive Oxygen Species - metabolism Rice Rice blast Rice blast disease Saccharomyces cerevisiae Sugar Thiols Thioredoxin Thioredoxin peroxidase Thioredoxin-Disulfide Reductase - deficiency Thioredoxin-Disulfide Reductase - genetics Thioredoxins |
title | Characterizing roles for the glutathione reductase, thioredoxin reductase and thioredoxin peroxidase-encoding genes of Magnaporthe oryzae during rice blast disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A05%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20roles%20for%20the%20glutathione%20reductase,%20thioredoxin%20reductase%20and%20thioredoxin%20peroxidase-encoding%20genes%20of%20Magnaporthe%20oryzae%20during%20rice%20blast%20disease&rft.jtitle=PloS%20one&rft.au=Fernandez,%20Jessie&rft.date=2014-01-24&rft.volume=9&rft.issue=1&rft.spage=e87300&rft.epage=e87300&rft.pages=e87300-e87300&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0087300&rft_dat=%3Cgale_plos_%3EA478845625%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1491439111&rft_id=info:pmid/24475267&rft_galeid=A478845625&rft_doaj_id=oai_doaj_org_article_6a9a857e4c554940866d1927ca1d6b38&rfr_iscdi=true |