On the value of intra-motif dependencies of human insulator protein CTCF
The binding affinity of DNA-binding proteins such as transcription factors is mainly determined by the base composition of the corresponding binding site on the DNA strand. Most proteins do not bind only a single sequence, but rather a set of sequences, which may be modeled by a sequence motif. Algo...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-01, Vol.9 (1), p.e85629-e85629 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e85629 |
---|---|
container_issue | 1 |
container_start_page | e85629 |
container_title | PloS one |
container_volume | 9 |
creator | Eggeling, Ralf Gohr, André Keilwagen, Jens Mohr, Michaela Posch, Stefan Smith, Andrew D Grosse, Ivo |
description | The binding affinity of DNA-binding proteins such as transcription factors is mainly determined by the base composition of the corresponding binding site on the DNA strand. Most proteins do not bind only a single sequence, but rather a set of sequences, which may be modeled by a sequence motif. Algorithms for de novo motif discovery differ in their promoter models, learning approaches, and other aspects, but typically use the statistically simple position weight matrix model for the motif, which assumes statistical independence among all nucleotides. However, there is no clear justification for that assumption, leading to an ongoing debate about the importance of modeling dependencies between nucleotides within binding sites. In the past, modeling statistical dependencies within binding sites has been hampered by the problem of limited data. With the rise of high-throughput technologies such as ChIP-seq, this situation has now changed, making it possible to make use of statistical dependencies effectively. In this work, we investigate the presence of statistical dependencies in binding sites of the human enhancer-blocking insulator protein CTCF by using the recently developed model class of inhomogeneous parsimonious Markov models, which is capable of modeling complex dependencies while avoiding overfitting. These findings lead to a more detailed characterization of the CTCF binding motif, which is only poorly represented by independent nucleotide frequencies at several positions, predominantly at the 3' end. |
doi_str_mv | 10.1371/journal.pone.0085629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1491119276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_de9f98e2c7434908ae45c71a18e090e9</doaj_id><sourcerecordid>3188497491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-739c76d56cb1e38cc0ea369230a06e54b861f5cd51cf1ab53e6ea388e70db00e3</originalsourceid><addsrcrecordid>eNptkk9v1DAQxS0EoqXwDRBE4sIli__HviChFaWVKvVSzpbjTLpeOXawk0r99mS7adUiTrY8v_c8M3oIfSR4Q1hDvu3TnKMNmzFF2GCshKT6FTolmtFaUsxeP7ufoHel7DEWTEn5Fp1QzuXCN6fo4jpW0w6qOxtmqFJf-ThlWw9p8n3VwQixg-g8lENtNw82LkSZg51SrsacJvCx2t5sz9-jN70NBT6s5xn6ff7zZntRX13_utz-uKqd0HSqG6ZdIzshXUuAKecwWCY1ZdhiCYK3SpJeuE4Q1xPbCgZyAZSCBnctxsDO0Oej7xhSMesSiiFcE0I0beRCXB6JLtm9GbMfbL43yXrz8JDyrbF58i6A6UD3WgF1DWdcY2WBC9cQSxRgjUEvXt_X3-Z2gM7BYTvhhenLSvQ7c5vuDFNaY84Xg6-rQU5_ZiiTGXxxEIKNkOaHvqnUmDG1oF_-Qf8_HT9SLqdSMvRPzRBsDsF4VJlDMMwajEX26fkgT6LHJLC_MqS2Kg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1491119276</pqid></control><display><type>article</type><title>On the value of intra-motif dependencies of human insulator protein CTCF</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Eggeling, Ralf ; Gohr, André ; Keilwagen, Jens ; Mohr, Michaela ; Posch, Stefan ; Smith, Andrew D ; Grosse, Ivo</creator><creatorcontrib>Eggeling, Ralf ; Gohr, André ; Keilwagen, Jens ; Mohr, Michaela ; Posch, Stefan ; Smith, Andrew D ; Grosse, Ivo</creatorcontrib><description>The binding affinity of DNA-binding proteins such as transcription factors is mainly determined by the base composition of the corresponding binding site on the DNA strand. Most proteins do not bind only a single sequence, but rather a set of sequences, which may be modeled by a sequence motif. Algorithms for de novo motif discovery differ in their promoter models, learning approaches, and other aspects, but typically use the statistically simple position weight matrix model for the motif, which assumes statistical independence among all nucleotides. However, there is no clear justification for that assumption, leading to an ongoing debate about the importance of modeling dependencies between nucleotides within binding sites. In the past, modeling statistical dependencies within binding sites has been hampered by the problem of limited data. With the rise of high-throughput technologies such as ChIP-seq, this situation has now changed, making it possible to make use of statistical dependencies effectively. In this work, we investigate the presence of statistical dependencies in binding sites of the human enhancer-blocking insulator protein CTCF by using the recently developed model class of inhomogeneous parsimonious Markov models, which is capable of modeling complex dependencies while avoiding overfitting. These findings lead to a more detailed characterization of the CTCF binding motif, which is only poorly represented by independent nucleotide frequencies at several positions, predominantly at the 3' end.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0085629</identifier><identifier>PMID: 24465627</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial intelligence ; Base composition ; Base Sequence ; Binding sites ; Binding Sites - genetics ; Bioinformatics ; Biology ; CCCTC-Binding Factor ; Cell Line ; Cells, Cultured ; Computer Science ; Deoxyribonucleic acid ; DNA ; DNA-binding protein ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Engineering ; Genomes ; HeLa Cells ; Hep G2 Cells ; Humans ; Hypotheses ; K562 Cells ; Markov Chains ; Mathematical models ; Mathematics ; MCF-7 Cells ; Modelling ; Models, Genetic ; Nucleotide Motifs - genetics ; Nucleotide sequence ; Nucleotides ; Protein Binding ; Proteins ; Random variables ; Repressor Proteins - genetics ; Repressor Proteins - metabolism ; Statistical analysis ; Transcription factors</subject><ispartof>PloS one, 2014-01, Vol.9 (1), p.e85629-e85629</ispartof><rights>2014 Eggeling et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Eggeling et al 2014 Eggeling et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-739c76d56cb1e38cc0ea369230a06e54b861f5cd51cf1ab53e6ea388e70db00e3</citedby><cites>FETCH-LOGICAL-c592t-739c76d56cb1e38cc0ea369230a06e54b861f5cd51cf1ab53e6ea388e70db00e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899044/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899044/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24465627$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eggeling, Ralf</creatorcontrib><creatorcontrib>Gohr, André</creatorcontrib><creatorcontrib>Keilwagen, Jens</creatorcontrib><creatorcontrib>Mohr, Michaela</creatorcontrib><creatorcontrib>Posch, Stefan</creatorcontrib><creatorcontrib>Smith, Andrew D</creatorcontrib><creatorcontrib>Grosse, Ivo</creatorcontrib><title>On the value of intra-motif dependencies of human insulator protein CTCF</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The binding affinity of DNA-binding proteins such as transcription factors is mainly determined by the base composition of the corresponding binding site on the DNA strand. Most proteins do not bind only a single sequence, but rather a set of sequences, which may be modeled by a sequence motif. Algorithms for de novo motif discovery differ in their promoter models, learning approaches, and other aspects, but typically use the statistically simple position weight matrix model for the motif, which assumes statistical independence among all nucleotides. However, there is no clear justification for that assumption, leading to an ongoing debate about the importance of modeling dependencies between nucleotides within binding sites. In the past, modeling statistical dependencies within binding sites has been hampered by the problem of limited data. With the rise of high-throughput technologies such as ChIP-seq, this situation has now changed, making it possible to make use of statistical dependencies effectively. In this work, we investigate the presence of statistical dependencies in binding sites of the human enhancer-blocking insulator protein CTCF by using the recently developed model class of inhomogeneous parsimonious Markov models, which is capable of modeling complex dependencies while avoiding overfitting. These findings lead to a more detailed characterization of the CTCF binding motif, which is only poorly represented by independent nucleotide frequencies at several positions, predominantly at the 3' end.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Base composition</subject><subject>Base Sequence</subject><subject>Binding sites</subject><subject>Binding Sites - genetics</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>CCCTC-Binding Factor</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Computer Science</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA-binding protein</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Engineering</subject><subject>Genomes</subject><subject>HeLa Cells</subject><subject>Hep G2 Cells</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>K562 Cells</subject><subject>Markov Chains</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>MCF-7 Cells</subject><subject>Modelling</subject><subject>Models, Genetic</subject><subject>Nucleotide Motifs - genetics</subject><subject>Nucleotide sequence</subject><subject>Nucleotides</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Random variables</subject><subject>Repressor Proteins - genetics</subject><subject>Repressor Proteins - metabolism</subject><subject>Statistical analysis</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkk9v1DAQxS0EoqXwDRBE4sIli__HviChFaWVKvVSzpbjTLpeOXawk0r99mS7adUiTrY8v_c8M3oIfSR4Q1hDvu3TnKMNmzFF2GCshKT6FTolmtFaUsxeP7ufoHel7DEWTEn5Fp1QzuXCN6fo4jpW0w6qOxtmqFJf-ThlWw9p8n3VwQixg-g8lENtNw82LkSZg51SrsacJvCx2t5sz9-jN70NBT6s5xn6ff7zZntRX13_utz-uKqd0HSqG6ZdIzshXUuAKecwWCY1ZdhiCYK3SpJeuE4Q1xPbCgZyAZSCBnctxsDO0Oej7xhSMesSiiFcE0I0beRCXB6JLtm9GbMfbL43yXrz8JDyrbF58i6A6UD3WgF1DWdcY2WBC9cQSxRgjUEvXt_X3-Z2gM7BYTvhhenLSvQ7c5vuDFNaY84Xg6-rQU5_ZiiTGXxxEIKNkOaHvqnUmDG1oF_-Qf8_HT9SLqdSMvRPzRBsDsF4VJlDMMwajEX26fkgT6LHJLC_MqS2Kg</recordid><startdate>20140122</startdate><enddate>20140122</enddate><creator>Eggeling, Ralf</creator><creator>Gohr, André</creator><creator>Keilwagen, Jens</creator><creator>Mohr, Michaela</creator><creator>Posch, Stefan</creator><creator>Smith, Andrew D</creator><creator>Grosse, Ivo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140122</creationdate><title>On the value of intra-motif dependencies of human insulator protein CTCF</title><author>Eggeling, Ralf ; Gohr, André ; Keilwagen, Jens ; Mohr, Michaela ; Posch, Stefan ; Smith, Andrew D ; Grosse, Ivo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-739c76d56cb1e38cc0ea369230a06e54b861f5cd51cf1ab53e6ea388e70db00e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Base composition</topic><topic>Base Sequence</topic><topic>Binding sites</topic><topic>Binding Sites - genetics</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>CCCTC-Binding Factor</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Computer Science</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA-binding protein</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Engineering</topic><topic>Genomes</topic><topic>HeLa Cells</topic><topic>Hep G2 Cells</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>K562 Cells</topic><topic>Markov Chains</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>MCF-7 Cells</topic><topic>Modelling</topic><topic>Models, Genetic</topic><topic>Nucleotide Motifs - genetics</topic><topic>Nucleotide sequence</topic><topic>Nucleotides</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Random variables</topic><topic>Repressor Proteins - genetics</topic><topic>Repressor Proteins - metabolism</topic><topic>Statistical analysis</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eggeling, Ralf</creatorcontrib><creatorcontrib>Gohr, André</creatorcontrib><creatorcontrib>Keilwagen, Jens</creatorcontrib><creatorcontrib>Mohr, Michaela</creatorcontrib><creatorcontrib>Posch, Stefan</creatorcontrib><creatorcontrib>Smith, Andrew D</creatorcontrib><creatorcontrib>Grosse, Ivo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eggeling, Ralf</au><au>Gohr, André</au><au>Keilwagen, Jens</au><au>Mohr, Michaela</au><au>Posch, Stefan</au><au>Smith, Andrew D</au><au>Grosse, Ivo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the value of intra-motif dependencies of human insulator protein CTCF</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-01-22</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>e85629</spage><epage>e85629</epage><pages>e85629-e85629</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The binding affinity of DNA-binding proteins such as transcription factors is mainly determined by the base composition of the corresponding binding site on the DNA strand. Most proteins do not bind only a single sequence, but rather a set of sequences, which may be modeled by a sequence motif. Algorithms for de novo motif discovery differ in their promoter models, learning approaches, and other aspects, but typically use the statistically simple position weight matrix model for the motif, which assumes statistical independence among all nucleotides. However, there is no clear justification for that assumption, leading to an ongoing debate about the importance of modeling dependencies between nucleotides within binding sites. In the past, modeling statistical dependencies within binding sites has been hampered by the problem of limited data. With the rise of high-throughput technologies such as ChIP-seq, this situation has now changed, making it possible to make use of statistical dependencies effectively. In this work, we investigate the presence of statistical dependencies in binding sites of the human enhancer-blocking insulator protein CTCF by using the recently developed model class of inhomogeneous parsimonious Markov models, which is capable of modeling complex dependencies while avoiding overfitting. These findings lead to a more detailed characterization of the CTCF binding motif, which is only poorly represented by independent nucleotide frequencies at several positions, predominantly at the 3' end.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24465627</pmid><doi>10.1371/journal.pone.0085629</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-01, Vol.9 (1), p.e85629-e85629 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1491119276 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial intelligence Base composition Base Sequence Binding sites Binding Sites - genetics Bioinformatics Biology CCCTC-Binding Factor Cell Line Cells, Cultured Computer Science Deoxyribonucleic acid DNA DNA-binding protein DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Engineering Genomes HeLa Cells Hep G2 Cells Humans Hypotheses K562 Cells Markov Chains Mathematical models Mathematics MCF-7 Cells Modelling Models, Genetic Nucleotide Motifs - genetics Nucleotide sequence Nucleotides Protein Binding Proteins Random variables Repressor Proteins - genetics Repressor Proteins - metabolism Statistical analysis Transcription factors |
title | On the value of intra-motif dependencies of human insulator protein CTCF |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A56%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20value%20of%20intra-motif%20dependencies%20of%20human%20insulator%20protein%20CTCF&rft.jtitle=PloS%20one&rft.au=Eggeling,%20Ralf&rft.date=2014-01-22&rft.volume=9&rft.issue=1&rft.spage=e85629&rft.epage=e85629&rft.pages=e85629-e85629&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0085629&rft_dat=%3Cproquest_plos_%3E3188497491%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1491119276&rft_id=info:pmid/24465627&rft_doaj_id=oai_doaj_org_article_de9f98e2c7434908ae45c71a18e090e9&rfr_iscdi=true |