Sweet taste receptor deficient mice have decreased adiposity and increased bone mass

Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-01, Vol.9 (1), p.e86454-e86454
Hauptverfasser: Simon, Becky R, Learman, Brian S, Parlee, Sebastian D, Scheller, Erica L, Mori, Hiroyuki, Cawthorn, William P, Ning, Xiaomin, Krishnan, Venkatesh, Ma, Yanfei L, Tyrberg, Björn, MacDougald, Ormond A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e86454
container_issue 1
container_start_page e86454
container_title PloS one
container_volume 9
creator Simon, Becky R
Learman, Brian S
Parlee, Sebastian D
Scheller, Erica L
Mori, Hiroyuki
Cawthorn, William P
Ning, Xiaomin
Krishnan, Venkatesh
Ma, Yanfei L
Tyrberg, Björn
MacDougald, Ormond A
description Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo.
doi_str_mv 10.1371/journal.pone.0086454
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1491119163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478854646</galeid><doaj_id>oai_doaj_org_article_7ddc7323a5d04c88a3d1478e87823faa</doaj_id><sourcerecordid>A478854646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-77c5d8b834b5df7ddece618f5178b5231305cadac4b4e920b337c1ce009771663</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2MWOP3NBqio-VqpUiRaulmNPdl1l463tFPrv8Xaz1Qb1gHyINXnmnfE7UxSvMZpjIvCnaz-EXnfzje9hjpDklNEnxTGuSTXjFSJPD-5HxYsYrxFiRHL-vDiqKOUcI3ZcXF3-Bkhl0jFBGcDAJvlQWmidcdCncu0MlCt9CzlmAugIttTWbXx06a7UvS1dv483uZNyrWN8WTxrdRfh1fg9KX5-_XJ19n12fvFtcXZ6PjOCyTQTwjArG0low2wrbK4AHMuWYSEbVhFMEDPaakMbCnWFGkKEwQYQqoXAnJOT4u1Od9P5qEZDosK0xhjXmJNMLHaE9fpabYJb63CnvHbqPuDDUumQnOlA5fpGkIpoZhE1UmpiMRUSpJAVabXOWp_HakOzBmuyPUF3E9Hpn96t1NLfKiLrumJ1FvgwCgR_M0BMau2iga7TPfjhvu-KS0GxyOi7f9DHXzdSS50f4PrW57pmK6pOc-uSUU63Ls0fofKxkKebZ9a6HJ8kfJwkZCbBn7TUQ4xqcfnj_9mLX1P2_QG7At2lVfTdkJzv4xSkO9AEH2OA9sFkjNR2-fduqO3yq3H5c9qbwwE9JO23nfwFhvX-xw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1491119163</pqid></control><display><type>article</type><title>Sweet taste receptor deficient mice have decreased adiposity and increased bone mass</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Simon, Becky R ; Learman, Brian S ; Parlee, Sebastian D ; Scheller, Erica L ; Mori, Hiroyuki ; Cawthorn, William P ; Ning, Xiaomin ; Krishnan, Venkatesh ; Ma, Yanfei L ; Tyrberg, Björn ; MacDougald, Ormond A</creator><contributor>Abderrahmani, Amar</contributor><creatorcontrib>Simon, Becky R ; Learman, Brian S ; Parlee, Sebastian D ; Scheller, Erica L ; Mori, Hiroyuki ; Cawthorn, William P ; Ning, Xiaomin ; Krishnan, Venkatesh ; Ma, Yanfei L ; Tyrberg, Björn ; MacDougald, Ormond A ; Abderrahmani, Amar</creatorcontrib><description>Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0086454</identifier><identifier>PMID: 24466105</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adipocytes ; Adipocytes - cytology ; Adipocytes - metabolism ; Adipogenesis ; Adipose tissue ; Adipose Tissue - metabolism ; Adiposity - genetics ; Animal tissues ; Animals ; Artificial sweeteners ; Biology ; Bone and Bones - cytology ; Bone and Bones - metabolism ; Bone Density ; Bone marrow ; Bone mass ; Bone remodeling ; Bone Remodeling - genetics ; Cancellous bone ; Carbohydrates ; Cell Size ; Cortical bone ; Diet ; Energy balance ; Energy metabolism ; Exercise ; Food ; Food intake ; Genetically modified animals ; Genotypes ; Glucose ; Glucose - metabolism ; Glucose tolerance ; High carbohydrate diet ; Insulin ; Intolerance ; Laboratory animals ; Male ; Medical research ; Medicine ; Metabolism ; Mice ; Mice, Knockout ; Molecular biology ; Nutrition research ; Obesity ; Oxygen ; Oxygen consumption ; Pancreas ; Physical activity ; Physiological aspects ; Physiology ; Receptors ; Receptors, G-Protein-Coupled - deficiency ; Respiratory quotient ; Rodents ; Sweet taste ; Taste ; Taste (Sense) ; Taste Buds - metabolism ; Taste receptors</subject><ispartof>PloS one, 2014-01, Vol.9 (1), p.e86454-e86454</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Simon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Simon et al 2014 Simon et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-77c5d8b834b5df7ddece618f5178b5231305cadac4b4e920b337c1ce009771663</citedby><cites>FETCH-LOGICAL-c758t-77c5d8b834b5df7ddece618f5178b5231305cadac4b4e920b337c1ce009771663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899259/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3899259/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24466105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Abderrahmani, Amar</contributor><creatorcontrib>Simon, Becky R</creatorcontrib><creatorcontrib>Learman, Brian S</creatorcontrib><creatorcontrib>Parlee, Sebastian D</creatorcontrib><creatorcontrib>Scheller, Erica L</creatorcontrib><creatorcontrib>Mori, Hiroyuki</creatorcontrib><creatorcontrib>Cawthorn, William P</creatorcontrib><creatorcontrib>Ning, Xiaomin</creatorcontrib><creatorcontrib>Krishnan, Venkatesh</creatorcontrib><creatorcontrib>Ma, Yanfei L</creatorcontrib><creatorcontrib>Tyrberg, Björn</creatorcontrib><creatorcontrib>MacDougald, Ormond A</creatorcontrib><title>Sweet taste receptor deficient mice have decreased adiposity and increased bone mass</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo.</description><subject>Adipocytes</subject><subject>Adipocytes - cytology</subject><subject>Adipocytes - metabolism</subject><subject>Adipogenesis</subject><subject>Adipose tissue</subject><subject>Adipose Tissue - metabolism</subject><subject>Adiposity - genetics</subject><subject>Animal tissues</subject><subject>Animals</subject><subject>Artificial sweeteners</subject><subject>Biology</subject><subject>Bone and Bones - cytology</subject><subject>Bone and Bones - metabolism</subject><subject>Bone Density</subject><subject>Bone marrow</subject><subject>Bone mass</subject><subject>Bone remodeling</subject><subject>Bone Remodeling - genetics</subject><subject>Cancellous bone</subject><subject>Carbohydrates</subject><subject>Cell Size</subject><subject>Cortical bone</subject><subject>Diet</subject><subject>Energy balance</subject><subject>Energy metabolism</subject><subject>Exercise</subject><subject>Food</subject><subject>Food intake</subject><subject>Genetically modified animals</subject><subject>Genotypes</subject><subject>Glucose</subject><subject>Glucose - metabolism</subject><subject>Glucose tolerance</subject><subject>High carbohydrate diet</subject><subject>Insulin</subject><subject>Intolerance</subject><subject>Laboratory animals</subject><subject>Male</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecular biology</subject><subject>Nutrition research</subject><subject>Obesity</subject><subject>Oxygen</subject><subject>Oxygen consumption</subject><subject>Pancreas</subject><subject>Physical activity</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Receptors</subject><subject>Receptors, G-Protein-Coupled - deficiency</subject><subject>Respiratory quotient</subject><subject>Rodents</subject><subject>Sweet taste</subject><subject>Taste</subject><subject>Taste (Sense)</subject><subject>Taste Buds - metabolism</subject><subject>Taste receptors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqXwDxBEQkJw2MWOP3NBqio-VqpUiRaulmNPdl1l463tFPrv8Xaz1Qb1gHyINXnmnfE7UxSvMZpjIvCnaz-EXnfzje9hjpDklNEnxTGuSTXjFSJPD-5HxYsYrxFiRHL-vDiqKOUcI3ZcXF3-Bkhl0jFBGcDAJvlQWmidcdCncu0MlCt9CzlmAugIttTWbXx06a7UvS1dv483uZNyrWN8WTxrdRfh1fg9KX5-_XJ19n12fvFtcXZ6PjOCyTQTwjArG0low2wrbK4AHMuWYSEbVhFMEDPaakMbCnWFGkKEwQYQqoXAnJOT4u1Od9P5qEZDosK0xhjXmJNMLHaE9fpabYJb63CnvHbqPuDDUumQnOlA5fpGkIpoZhE1UmpiMRUSpJAVabXOWp_HakOzBmuyPUF3E9Hpn96t1NLfKiLrumJ1FvgwCgR_M0BMau2iga7TPfjhvu-KS0GxyOi7f9DHXzdSS50f4PrW57pmK6pOc-uSUU63Ls0fofKxkKebZ9a6HJ8kfJwkZCbBn7TUQ4xqcfnj_9mLX1P2_QG7At2lVfTdkJzv4xSkO9AEH2OA9sFkjNR2-fduqO3yq3H5c9qbwwE9JO23nfwFhvX-xw</recordid><startdate>20140122</startdate><enddate>20140122</enddate><creator>Simon, Becky R</creator><creator>Learman, Brian S</creator><creator>Parlee, Sebastian D</creator><creator>Scheller, Erica L</creator><creator>Mori, Hiroyuki</creator><creator>Cawthorn, William P</creator><creator>Ning, Xiaomin</creator><creator>Krishnan, Venkatesh</creator><creator>Ma, Yanfei L</creator><creator>Tyrberg, Björn</creator><creator>MacDougald, Ormond A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140122</creationdate><title>Sweet taste receptor deficient mice have decreased adiposity and increased bone mass</title><author>Simon, Becky R ; Learman, Brian S ; Parlee, Sebastian D ; Scheller, Erica L ; Mori, Hiroyuki ; Cawthorn, William P ; Ning, Xiaomin ; Krishnan, Venkatesh ; Ma, Yanfei L ; Tyrberg, Björn ; MacDougald, Ormond A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-77c5d8b834b5df7ddece618f5178b5231305cadac4b4e920b337c1ce009771663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adipocytes</topic><topic>Adipocytes - cytology</topic><topic>Adipocytes - metabolism</topic><topic>Adipogenesis</topic><topic>Adipose tissue</topic><topic>Adipose Tissue - metabolism</topic><topic>Adiposity - genetics</topic><topic>Animal tissues</topic><topic>Animals</topic><topic>Artificial sweeteners</topic><topic>Biology</topic><topic>Bone and Bones - cytology</topic><topic>Bone and Bones - metabolism</topic><topic>Bone Density</topic><topic>Bone marrow</topic><topic>Bone mass</topic><topic>Bone remodeling</topic><topic>Bone Remodeling - genetics</topic><topic>Cancellous bone</topic><topic>Carbohydrates</topic><topic>Cell Size</topic><topic>Cortical bone</topic><topic>Diet</topic><topic>Energy balance</topic><topic>Energy metabolism</topic><topic>Exercise</topic><topic>Food</topic><topic>Food intake</topic><topic>Genetically modified animals</topic><topic>Genotypes</topic><topic>Glucose</topic><topic>Glucose - metabolism</topic><topic>Glucose tolerance</topic><topic>High carbohydrate diet</topic><topic>Insulin</topic><topic>Intolerance</topic><topic>Laboratory animals</topic><topic>Male</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecular biology</topic><topic>Nutrition research</topic><topic>Obesity</topic><topic>Oxygen</topic><topic>Oxygen consumption</topic><topic>Pancreas</topic><topic>Physical activity</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Receptors</topic><topic>Receptors, G-Protein-Coupled - deficiency</topic><topic>Respiratory quotient</topic><topic>Rodents</topic><topic>Sweet taste</topic><topic>Taste</topic><topic>Taste (Sense)</topic><topic>Taste Buds - metabolism</topic><topic>Taste receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simon, Becky R</creatorcontrib><creatorcontrib>Learman, Brian S</creatorcontrib><creatorcontrib>Parlee, Sebastian D</creatorcontrib><creatorcontrib>Scheller, Erica L</creatorcontrib><creatorcontrib>Mori, Hiroyuki</creatorcontrib><creatorcontrib>Cawthorn, William P</creatorcontrib><creatorcontrib>Ning, Xiaomin</creatorcontrib><creatorcontrib>Krishnan, Venkatesh</creatorcontrib><creatorcontrib>Ma, Yanfei L</creatorcontrib><creatorcontrib>Tyrberg, Björn</creatorcontrib><creatorcontrib>MacDougald, Ormond A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simon, Becky R</au><au>Learman, Brian S</au><au>Parlee, Sebastian D</au><au>Scheller, Erica L</au><au>Mori, Hiroyuki</au><au>Cawthorn, William P</au><au>Ning, Xiaomin</au><au>Krishnan, Venkatesh</au><au>Ma, Yanfei L</au><au>Tyrberg, Björn</au><au>MacDougald, Ormond A</au><au>Abderrahmani, Amar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sweet taste receptor deficient mice have decreased adiposity and increased bone mass</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-01-22</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>e86454</spage><epage>e86454</epage><pages>e86454-e86454</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Functional expression of sweet taste receptors (T1R2 and T1R3) has been reported in numerous metabolic tissues, including the gut, pancreas, and, more recently, in adipose tissue. It has been suggested that sweet taste receptors in these non-gustatory tissues may play a role in systemic energy balance and metabolism. Smaller adipose depots have been reported in T1R3 knockout mice on a high carbohydrate diet, and sweet taste receptors have been reported to regulate adipogenesis in vitro. To assess the potential contribution of sweet taste receptors to adipose tissue biology, we investigated the adipose tissue phenotypes of T1R2 and T1R3 knockout mice. Here we provide data to demonstrate that when fed an obesogenic diet, both T1R2 and T1R3 knockout mice have reduced adiposity and smaller adipocytes. Although a mild glucose intolerance was observed with T1R3 deficiency, other metabolic variables analyzed were similar between genotypes. In addition, food intake, respiratory quotient, oxygen consumption, and physical activity were unchanged in T1R2 knockout mice. Although T1R2 deficiency did not affect adipocyte number in peripheral adipose depots, the number of bone marrow adipocytes is significantly reduced in these knockout animals. Finally, we present data demonstrating that T1R2 and T1R3 knockout mice have increased cortical bone mass and trabecular remodeling. This report identifies novel functions for sweet taste receptors in the regulation of adipose and bone biology, and suggests that in these contexts, T1R2 and T1R3 are either dependent on each other for activity or have common independent effects in vivo.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24466105</pmid><doi>10.1371/journal.pone.0086454</doi><tpages>e86454</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-01, Vol.9 (1), p.e86454-e86454
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1491119163
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adipocytes
Adipocytes - cytology
Adipocytes - metabolism
Adipogenesis
Adipose tissue
Adipose Tissue - metabolism
Adiposity - genetics
Animal tissues
Animals
Artificial sweeteners
Biology
Bone and Bones - cytology
Bone and Bones - metabolism
Bone Density
Bone marrow
Bone mass
Bone remodeling
Bone Remodeling - genetics
Cancellous bone
Carbohydrates
Cell Size
Cortical bone
Diet
Energy balance
Energy metabolism
Exercise
Food
Food intake
Genetically modified animals
Genotypes
Glucose
Glucose - metabolism
Glucose tolerance
High carbohydrate diet
Insulin
Intolerance
Laboratory animals
Male
Medical research
Medicine
Metabolism
Mice
Mice, Knockout
Molecular biology
Nutrition research
Obesity
Oxygen
Oxygen consumption
Pancreas
Physical activity
Physiological aspects
Physiology
Receptors
Receptors, G-Protein-Coupled - deficiency
Respiratory quotient
Rodents
Sweet taste
Taste
Taste (Sense)
Taste Buds - metabolism
Taste receptors
title Sweet taste receptor deficient mice have decreased adiposity and increased bone mass
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sweet%20taste%20receptor%20deficient%20mice%20have%20decreased%20adiposity%20and%20increased%20bone%20mass&rft.jtitle=PloS%20one&rft.au=Simon,%20Becky%20R&rft.date=2014-01-22&rft.volume=9&rft.issue=1&rft.spage=e86454&rft.epage=e86454&rft.pages=e86454-e86454&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0086454&rft_dat=%3Cgale_plos_%3EA478854646%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1491119163&rft_id=info:pmid/24466105&rft_galeid=A478854646&rft_doaj_id=oai_doaj_org_article_7ddc7323a5d04c88a3d1478e87823faa&rfr_iscdi=true