Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism
In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intesti...
Gespeichert in:
Veröffentlicht in: | PloS one 2014-01, Vol.9 (1), p.e85482 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | e85482 |
container_title | PloS one |
container_volume | 9 |
creator | Zhuang, Ziheng Zhao, Yunli Wu, Qiuli Li, Min Liu, Haicui Sun, Lingmei Gao, Wei Wang, Dayong |
description | In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clentuberol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clentuberol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clentuberol or ractopamine. Besides oxidative stress, we found that clentuberol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clentuberol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clentuberol and ractopamine may induce toxicity through different molecular mechanisms. |
doi_str_mv | 10.1371/journal.pone.0085482 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1490992618</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478855499</galeid><doaj_id>oai_doaj_org_article_4adbc99e3dbc41feaae858c8f7d31603</doaj_id><sourcerecordid>A478855499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-de72e77f2264e9ff50e4267ee927ce77cb947f130cfb205fcc1e49777afc49e93</originalsourceid><addsrcrecordid>eNqNkl2L3CAYhUNp6W63_QelDRQKvZipURPjTWEY-jGwsNCvWzHmNXFJdKpm6f77OjvZZQItFC8Ufc5RDyfLXhZoXRBWvL92k7dyWO-dhTVCdUlr_Cg7LzjBqwoj8vhkfZY9C-EaoZLUVfU0O8OUVmXJyHm237Q34APkoDWoGHLt3ZirAWwzRfBuyKVtcy9VdHs5Ggu5s7mFUUbXQr6VYJ3vZdOaaEIOA3TShjtJ7CGfbAt-uDW2y0dQvbQmjM-zJ1oOAV7M80X249PH79svq8urz7vt5nKlKo7jqgWGgTGNcUWBa10ioLhiABwzlQ5UwynTBUFKNxiVWqkCKGeMSa0oB04ustdH3_3ggpjDCqKgHHGOq6JOxO5ItE5ei703o_S3wkkj7jac74T00aQsBJVtozgHkiZaaJAS6rJWtWYtKSpEkteH-bapGaFVYKOXw8J0eWJNLzp3I0jNGSUoGbyZDbz7NUGI_3jyTHUyvcpY7ZKZGk1QYkNZXZcl5Yevr_9CpdHCaFSqizZpfyF4txAkJsLv2MkpBLH79vX_2aufS_btCduDHGIf3DBF42xYgvQIKu9C8KAfkiuQOLT9Pg1xaLuY255kr05TfxDd15v8Ac0r_Zc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490992618</pqid></control><display><type>article</type><title>Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhuang, Ziheng ; Zhao, Yunli ; Wu, Qiuli ; Li, Min ; Liu, Haicui ; Sun, Lingmei ; Gao, Wei ; Wang, Dayong</creator><contributor>Holvoet, Paul</contributor><creatorcontrib>Zhuang, Ziheng ; Zhao, Yunli ; Wu, Qiuli ; Li, Min ; Liu, Haicui ; Sun, Lingmei ; Gao, Wei ; Wang, Dayong ; Holvoet, Paul</creatorcontrib><description>In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clentuberol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clentuberol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clentuberol or ractopamine. Besides oxidative stress, we found that clentuberol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clentuberol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clentuberol and ractopamine may induce toxicity through different molecular mechanisms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0085482</identifier><identifier>PMID: 24465573</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adrenergic beta-Agonists - toxicity ; Age ; Aging ; AMP-Activated Protein Kinases ; Animal behavior ; Animals ; Biocompatibility ; Biology ; Caenorhabditis elegans ; Caenorhabditis elegans - drug effects ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - metabolism ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Clenbuterol ; Clenbuterol - toxicity ; Clutch Size - drug effects ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Education ; Engineering ; Environmental health ; Exposure ; Fluorescence ; Forkhead Transcription Factors ; Gene Expression ; Genes ; In vivo methods and tests ; Insulin ; Insulin - genetics ; Insulin - metabolism ; Insulin-like growth factors ; Intestinal Mucosa - metabolism ; Intestine ; Intestines - drug effects ; Kinases ; Laboratories ; Lethality ; Life sciences ; Life span ; Locomotion ; Locomotion - drug effects ; Longevity - drug effects ; Mammals ; Medical schools ; Medicine ; Molecular modelling ; Musculoskeletal system ; Nematodes ; Oxidative Stress ; Oxygen ; Phenethylamines - toxicity ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Quantum dots ; Reactive oxygen species ; Reactive Oxygen Species - agonists ; Reactive Oxygen Species - metabolism ; Roundworms ; Signal Transduction ; Signaling ; Somatomedins - genetics ; Somatomedins - metabolism ; Studies ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism ; Superoxides ; Toxicity ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Worms ; Young adults</subject><ispartof>PloS one, 2014-01, Vol.9 (1), p.e85482</ispartof><rights>COPYRIGHT 2014 Public Library of Science</rights><rights>2014 Zhuang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Zhuang et al 2014 Zhuang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-de72e77f2264e9ff50e4267ee927ce77cb947f130cfb205fcc1e49777afc49e93</citedby><cites>FETCH-LOGICAL-c692t-de72e77f2264e9ff50e4267ee927ce77cb947f130cfb205fcc1e49777afc49e93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897430/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897430/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24465573$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Holvoet, Paul</contributor><creatorcontrib>Zhuang, Ziheng</creatorcontrib><creatorcontrib>Zhao, Yunli</creatorcontrib><creatorcontrib>Wu, Qiuli</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Liu, Haicui</creatorcontrib><creatorcontrib>Sun, Lingmei</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Wang, Dayong</creatorcontrib><title>Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clentuberol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clentuberol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clentuberol or ractopamine. Besides oxidative stress, we found that clentuberol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clentuberol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clentuberol and ractopamine may induce toxicity through different molecular mechanisms.</description><subject>Adrenergic beta-Agonists - toxicity</subject><subject>Age</subject><subject>Aging</subject><subject>AMP-Activated Protein Kinases</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biology</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - drug effects</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - metabolism</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Clenbuterol</subject><subject>Clenbuterol - toxicity</subject><subject>Clutch Size - drug effects</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Education</subject><subject>Engineering</subject><subject>Environmental health</subject><subject>Exposure</subject><subject>Fluorescence</subject><subject>Forkhead Transcription Factors</subject><subject>Gene Expression</subject><subject>Genes</subject><subject>In vivo methods and tests</subject><subject>Insulin</subject><subject>Insulin - genetics</subject><subject>Insulin - metabolism</subject><subject>Insulin-like growth factors</subject><subject>Intestinal Mucosa - metabolism</subject><subject>Intestine</subject><subject>Intestines - drug effects</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Lethality</subject><subject>Life sciences</subject><subject>Life span</subject><subject>Locomotion</subject><subject>Locomotion - drug effects</subject><subject>Longevity - drug effects</subject><subject>Mammals</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Molecular modelling</subject><subject>Musculoskeletal system</subject><subject>Nematodes</subject><subject>Oxidative Stress</subject><subject>Oxygen</subject><subject>Phenethylamines - toxicity</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Quantum dots</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - agonists</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Roundworms</subject><subject>Signal Transduction</subject><subject>Signaling</subject><subject>Somatomedins - genetics</subject><subject>Somatomedins - metabolism</subject><subject>Studies</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><subject>Superoxides</subject><subject>Toxicity</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Worms</subject><subject>Young adults</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L3CAYhUNp6W63_QelDRQKvZipURPjTWEY-jGwsNCvWzHmNXFJdKpm6f77OjvZZQItFC8Ufc5RDyfLXhZoXRBWvL92k7dyWO-dhTVCdUlr_Cg7LzjBqwoj8vhkfZY9C-EaoZLUVfU0O8OUVmXJyHm237Q34APkoDWoGHLt3ZirAWwzRfBuyKVtcy9VdHs5Ggu5s7mFUUbXQr6VYJ3vZdOaaEIOA3TShjtJ7CGfbAt-uDW2y0dQvbQmjM-zJ1oOAV7M80X249PH79svq8urz7vt5nKlKo7jqgWGgTGNcUWBa10ioLhiABwzlQ5UwynTBUFKNxiVWqkCKGeMSa0oB04ustdH3_3ggpjDCqKgHHGOq6JOxO5ItE5ei703o_S3wkkj7jac74T00aQsBJVtozgHkiZaaJAS6rJWtWYtKSpEkteH-bapGaFVYKOXw8J0eWJNLzp3I0jNGSUoGbyZDbz7NUGI_3jyTHUyvcpY7ZKZGk1QYkNZXZcl5Yevr_9CpdHCaFSqizZpfyF4txAkJsLv2MkpBLH79vX_2aufS_btCduDHGIf3DBF42xYgvQIKu9C8KAfkiuQOLT9Pg1xaLuY255kr05TfxDd15v8Ac0r_Zc</recordid><startdate>20140121</startdate><enddate>20140121</enddate><creator>Zhuang, Ziheng</creator><creator>Zhao, Yunli</creator><creator>Wu, Qiuli</creator><creator>Li, Min</creator><creator>Liu, Haicui</creator><creator>Sun, Lingmei</creator><creator>Gao, Wei</creator><creator>Wang, Dayong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140121</creationdate><title>Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism</title><author>Zhuang, Ziheng ; Zhao, Yunli ; Wu, Qiuli ; Li, Min ; Liu, Haicui ; Sun, Lingmei ; Gao, Wei ; Wang, Dayong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-de72e77f2264e9ff50e4267ee927ce77cb947f130cfb205fcc1e49777afc49e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adrenergic beta-Agonists - toxicity</topic><topic>Age</topic><topic>Aging</topic><topic>AMP-Activated Protein Kinases</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biology</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - drug effects</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - metabolism</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Clenbuterol</topic><topic>Clenbuterol - toxicity</topic><topic>Clutch Size - drug effects</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Education</topic><topic>Engineering</topic><topic>Environmental health</topic><topic>Exposure</topic><topic>Fluorescence</topic><topic>Forkhead Transcription Factors</topic><topic>Gene Expression</topic><topic>Genes</topic><topic>In vivo methods and tests</topic><topic>Insulin</topic><topic>Insulin - genetics</topic><topic>Insulin - metabolism</topic><topic>Insulin-like growth factors</topic><topic>Intestinal Mucosa - metabolism</topic><topic>Intestine</topic><topic>Intestines - drug effects</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Lethality</topic><topic>Life sciences</topic><topic>Life span</topic><topic>Locomotion</topic><topic>Locomotion - drug effects</topic><topic>Longevity - drug effects</topic><topic>Mammals</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Molecular modelling</topic><topic>Musculoskeletal system</topic><topic>Nematodes</topic><topic>Oxidative Stress</topic><topic>Oxygen</topic><topic>Phenethylamines - toxicity</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Quantum dots</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - agonists</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Roundworms</topic><topic>Signal Transduction</topic><topic>Signaling</topic><topic>Somatomedins - genetics</topic><topic>Somatomedins - metabolism</topic><topic>Studies</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><topic>Superoxides</topic><topic>Toxicity</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Worms</topic><topic>Young adults</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhuang, Ziheng</creatorcontrib><creatorcontrib>Zhao, Yunli</creatorcontrib><creatorcontrib>Wu, Qiuli</creatorcontrib><creatorcontrib>Li, Min</creatorcontrib><creatorcontrib>Liu, Haicui</creatorcontrib><creatorcontrib>Sun, Lingmei</creatorcontrib><creatorcontrib>Gao, Wei</creatorcontrib><creatorcontrib>Wang, Dayong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhuang, Ziheng</au><au>Zhao, Yunli</au><au>Wu, Qiuli</au><au>Li, Min</au><au>Liu, Haicui</au><au>Sun, Lingmei</au><au>Gao, Wei</au><au>Wang, Dayong</au><au>Holvoet, Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-01-21</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>e85482</spage><pages>e85482-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clentuberol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clentuberol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clentuberol or ractopamine. Besides oxidative stress, we found that clentuberol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clentuberol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clentuberol and ractopamine may induce toxicity through different molecular mechanisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24465573</pmid><doi>10.1371/journal.pone.0085482</doi><tpages>e85482</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014-01, Vol.9 (1), p.e85482 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1490992618 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Adrenergic beta-Agonists - toxicity Age Aging AMP-Activated Protein Kinases Animal behavior Animals Biocompatibility Biology Caenorhabditis elegans Caenorhabditis elegans - drug effects Caenorhabditis elegans - genetics Caenorhabditis elegans - metabolism Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Clenbuterol Clenbuterol - toxicity Clutch Size - drug effects DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Education Engineering Environmental health Exposure Fluorescence Forkhead Transcription Factors Gene Expression Genes In vivo methods and tests Insulin Insulin - genetics Insulin - metabolism Insulin-like growth factors Intestinal Mucosa - metabolism Intestine Intestines - drug effects Kinases Laboratories Lethality Life sciences Life span Locomotion Locomotion - drug effects Longevity - drug effects Mammals Medical schools Medicine Molecular modelling Musculoskeletal system Nematodes Oxidative Stress Oxygen Phenethylamines - toxicity Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Quantum dots Reactive oxygen species Reactive Oxygen Species - agonists Reactive Oxygen Species - metabolism Roundworms Signal Transduction Signaling Somatomedins - genetics Somatomedins - metabolism Studies Superoxide Dismutase - genetics Superoxide Dismutase - metabolism Superoxides Toxicity Transcription Factors - genetics Transcription Factors - metabolism Worms Young adults |
title | Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A50%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adverse%20effects%20from%20clenbuterol%20and%20ractopamine%20on%20nematode%20Caenorhabditis%20elegans%20and%20the%20underlying%20mechanism&rft.jtitle=PloS%20one&rft.au=Zhuang,%20Ziheng&rft.date=2014-01-21&rft.volume=9&rft.issue=1&rft.spage=e85482&rft.pages=e85482-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0085482&rft_dat=%3Cgale_plos_%3EA478855499%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1490992618&rft_id=info:pmid/24465573&rft_galeid=A478855499&rft_doaj_id=oai_doaj_org_article_4adbc99e3dbc41feaae858c8f7d31603&rfr_iscdi=true |