GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice
GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with al...
Gespeichert in:
Veröffentlicht in: | PloS one 2014, Vol.9 (1), p.e85525-e85525 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e85525 |
---|---|
container_issue | 1 |
container_start_page | e85525 |
container_title | PloS one |
container_volume | 9 |
creator | Blednov, Yuri A Benavidez, Jillian M Black, Mendy Leiter, Courtney R Osterndorff-Kahanek, Elizabeth Johnson, David Borghese, Cecilia M Hanrahan, Jane R Johnston, Graham A R Chebib, Mary Harris, R Adron |
description | GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ1" antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ2" antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo. |
doi_str_mv | 10.1371/journal.pone.0085525 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1477966317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c3532f191fae40468dbc4d1656f56bd3</doaj_id><sourcerecordid>1492692572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4415-119c432f5c5e4f4c9f96a3e062bcc0b0178ebbc26802b974a3a91a3dea644cb83</originalsourceid><addsrcrecordid>eNptUk1vEzEQtRCIlsI_QLASl14S_L32BSlUpVSqxAUkbpbtHaeONnawdyNx5Bfyl9iQbdUiTrbmvXnzZvQQek3wkrCWvN_ksSTbL3c5wRJjJQQVT9Ap0YwuJMXs6YP_CXpR6wZjwZSUz9EJ5Vxwpegp-n61-rhaNQU87IZcauNzGmxMMa2b379IU0c3pjgc6yW6cYBmyE1MzT7ucwMhgJ_QHBoYbm3K_QHaRg8v0bNg-wqv5vcMfft0-fXi8-Lmy9X1xepm4TknYkGI9pzRILwAHrjXQUvLAEvqvMcOk1aBc55KhanTLbfMamJZB1Zy7p1iZ-jtUXfX52rmo1RDeNtqKRlpJ8b1kdFluzG7Ere2_DTZRvO3kMva2DJE34PxTExeiCbBAsdcqs553hEpZBDSdWzS-jBPG90WOg_TUWz_SPQxkuKtWee9YUpzovAkcD4LlPxjhDqYbawe-t4myOPBt6ZSU9HSifruH-r_t-NHli-51gLh3gzB5hCUuy5zCIqZgzK1vXm4yH3TXTLYH_F7vGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1477966317</pqid></control><display><type>article</type><title>GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Blednov, Yuri A ; Benavidez, Jillian M ; Black, Mendy ; Leiter, Courtney R ; Osterndorff-Kahanek, Elizabeth ; Johnson, David ; Borghese, Cecilia M ; Hanrahan, Jane R ; Johnston, Graham A R ; Chebib, Mary ; Harris, R Adron</creator><creatorcontrib>Blednov, Yuri A ; Benavidez, Jillian M ; Black, Mendy ; Leiter, Courtney R ; Osterndorff-Kahanek, Elizabeth ; Johnson, David ; Borghese, Cecilia M ; Hanrahan, Jane R ; Johnston, Graham A R ; Chebib, Mary ; Harris, R Adron</creatorcontrib><description>GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ1" antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ2" antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0085525</identifier><identifier>PMID: 24454882</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Addictions ; Alcohol ; Alcoholic beverages ; Animals ; Anxiety - psychology ; Biology ; Brain ; Brain research ; Cells, Cultured ; Central Nervous System Depressants - metabolism ; Central Nervous System Depressants - pharmacology ; Cerebellum ; Conditioning ; Drug dependence ; Ethanol ; Ethanol - metabolism ; Ethanol - pharmacology ; Female ; Females ; GABA Agonists - pharmacology ; GABA-A Receptor Antagonists - pharmacology ; gamma-Aminobutyric Acid - pharmacology ; In vivo methods and tests ; Ketamine - pharmacology ; Laboratory animals ; Localization ; Male ; Males ; Mice ; Mice, Transgenic ; Motor Activity - drug effects ; mRNA ; Pharmacy ; Phosphinic Acids - pharmacology ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Quinine ; Receptor mechanisms ; Receptors ; Receptors, GABA-A - genetics ; Receptors, GABA-A - metabolism ; Reflex, Righting - drug effects ; Reflex, Startle - drug effects ; Retina ; Righting reflex ; Rodents ; Rotarod Performance Test ; Saccharin ; Spinal cord ; Taste aversion ; Xenopus laevis ; γ-Aminobutyric acid A receptors</subject><ispartof>PloS one, 2014, Vol.9 (1), p.e85525-e85525</ispartof><rights>2014 Blednov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014 Blednov et al 2014 Blednov et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4415-119c432f5c5e4f4c9f96a3e062bcc0b0178ebbc26802b974a3a91a3dea644cb83</citedby><cites>FETCH-LOGICAL-c4415-119c432f5c5e4f4c9f96a3e062bcc0b0178ebbc26802b974a3a91a3dea644cb83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894180/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3894180/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,4010,23845,27900,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24454882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blednov, Yuri A</creatorcontrib><creatorcontrib>Benavidez, Jillian M</creatorcontrib><creatorcontrib>Black, Mendy</creatorcontrib><creatorcontrib>Leiter, Courtney R</creatorcontrib><creatorcontrib>Osterndorff-Kahanek, Elizabeth</creatorcontrib><creatorcontrib>Johnson, David</creatorcontrib><creatorcontrib>Borghese, Cecilia M</creatorcontrib><creatorcontrib>Hanrahan, Jane R</creatorcontrib><creatorcontrib>Johnston, Graham A R</creatorcontrib><creatorcontrib>Chebib, Mary</creatorcontrib><creatorcontrib>Harris, R Adron</creatorcontrib><title>GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ1" antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ2" antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.</description><subject>Acids</subject><subject>Addictions</subject><subject>Alcohol</subject><subject>Alcoholic beverages</subject><subject>Animals</subject><subject>Anxiety - psychology</subject><subject>Biology</subject><subject>Brain</subject><subject>Brain research</subject><subject>Cells, Cultured</subject><subject>Central Nervous System Depressants - metabolism</subject><subject>Central Nervous System Depressants - pharmacology</subject><subject>Cerebellum</subject><subject>Conditioning</subject><subject>Drug dependence</subject><subject>Ethanol</subject><subject>Ethanol - metabolism</subject><subject>Ethanol - pharmacology</subject><subject>Female</subject><subject>Females</subject><subject>GABA Agonists - pharmacology</subject><subject>GABA-A Receptor Antagonists - pharmacology</subject><subject>gamma-Aminobutyric Acid - pharmacology</subject><subject>In vivo methods and tests</subject><subject>Ketamine - pharmacology</subject><subject>Laboratory animals</subject><subject>Localization</subject><subject>Male</subject><subject>Males</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Motor Activity - drug effects</subject><subject>mRNA</subject><subject>Pharmacy</subject><subject>Phosphinic Acids - pharmacology</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Quinine</subject><subject>Receptor mechanisms</subject><subject>Receptors</subject><subject>Receptors, GABA-A - genetics</subject><subject>Receptors, GABA-A - metabolism</subject><subject>Reflex, Righting - drug effects</subject><subject>Reflex, Startle - drug effects</subject><subject>Retina</subject><subject>Righting reflex</subject><subject>Rodents</subject><subject>Rotarod Performance Test</subject><subject>Saccharin</subject><subject>Spinal cord</subject><subject>Taste aversion</subject><subject>Xenopus laevis</subject><subject>γ-Aminobutyric acid A receptors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEQtRCIlsI_QLASl14S_L32BSlUpVSqxAUkbpbtHaeONnawdyNx5Bfyl9iQbdUiTrbmvXnzZvQQek3wkrCWvN_ksSTbL3c5wRJjJQQVT9Ap0YwuJMXs6YP_CXpR6wZjwZSUz9EJ5Vxwpegp-n61-rhaNQU87IZcauNzGmxMMa2b379IU0c3pjgc6yW6cYBmyE1MzT7ucwMhgJ_QHBoYbm3K_QHaRg8v0bNg-wqv5vcMfft0-fXi8-Lmy9X1xepm4TknYkGI9pzRILwAHrjXQUvLAEvqvMcOk1aBc55KhanTLbfMamJZB1Zy7p1iZ-jtUXfX52rmo1RDeNtqKRlpJ8b1kdFluzG7Ere2_DTZRvO3kMva2DJE34PxTExeiCbBAsdcqs553hEpZBDSdWzS-jBPG90WOg_TUWz_SPQxkuKtWee9YUpzovAkcD4LlPxjhDqYbawe-t4myOPBt6ZSU9HSifruH-r_t-NHli-51gLh3gzB5hCUuy5zCIqZgzK1vXm4yH3TXTLYH_F7vGA</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Blednov, Yuri A</creator><creator>Benavidez, Jillian M</creator><creator>Black, Mendy</creator><creator>Leiter, Courtney R</creator><creator>Osterndorff-Kahanek, Elizabeth</creator><creator>Johnson, David</creator><creator>Borghese, Cecilia M</creator><creator>Hanrahan, Jane R</creator><creator>Johnston, Graham A R</creator><creator>Chebib, Mary</creator><creator>Harris, R Adron</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>2014</creationdate><title>GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice</title><author>Blednov, Yuri A ; Benavidez, Jillian M ; Black, Mendy ; Leiter, Courtney R ; Osterndorff-Kahanek, Elizabeth ; Johnson, David ; Borghese, Cecilia M ; Hanrahan, Jane R ; Johnston, Graham A R ; Chebib, Mary ; Harris, R Adron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4415-119c432f5c5e4f4c9f96a3e062bcc0b0178ebbc26802b974a3a91a3dea644cb83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acids</topic><topic>Addictions</topic><topic>Alcohol</topic><topic>Alcoholic beverages</topic><topic>Animals</topic><topic>Anxiety - psychology</topic><topic>Biology</topic><topic>Brain</topic><topic>Brain research</topic><topic>Cells, Cultured</topic><topic>Central Nervous System Depressants - metabolism</topic><topic>Central Nervous System Depressants - pharmacology</topic><topic>Cerebellum</topic><topic>Conditioning</topic><topic>Drug dependence</topic><topic>Ethanol</topic><topic>Ethanol - metabolism</topic><topic>Ethanol - pharmacology</topic><topic>Female</topic><topic>Females</topic><topic>GABA Agonists - pharmacology</topic><topic>GABA-A Receptor Antagonists - pharmacology</topic><topic>gamma-Aminobutyric Acid - pharmacology</topic><topic>In vivo methods and tests</topic><topic>Ketamine - pharmacology</topic><topic>Laboratory animals</topic><topic>Localization</topic><topic>Male</topic><topic>Males</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Motor Activity - drug effects</topic><topic>mRNA</topic><topic>Pharmacy</topic><topic>Phosphinic Acids - pharmacology</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Quinine</topic><topic>Receptor mechanisms</topic><topic>Receptors</topic><topic>Receptors, GABA-A - genetics</topic><topic>Receptors, GABA-A - metabolism</topic><topic>Reflex, Righting - drug effects</topic><topic>Reflex, Startle - drug effects</topic><topic>Retina</topic><topic>Righting reflex</topic><topic>Rodents</topic><topic>Rotarod Performance Test</topic><topic>Saccharin</topic><topic>Spinal cord</topic><topic>Taste aversion</topic><topic>Xenopus laevis</topic><topic>γ-Aminobutyric acid A receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blednov, Yuri A</creatorcontrib><creatorcontrib>Benavidez, Jillian M</creatorcontrib><creatorcontrib>Black, Mendy</creatorcontrib><creatorcontrib>Leiter, Courtney R</creatorcontrib><creatorcontrib>Osterndorff-Kahanek, Elizabeth</creatorcontrib><creatorcontrib>Johnson, David</creatorcontrib><creatorcontrib>Borghese, Cecilia M</creatorcontrib><creatorcontrib>Hanrahan, Jane R</creatorcontrib><creatorcontrib>Johnston, Graham A R</creatorcontrib><creatorcontrib>Chebib, Mary</creatorcontrib><creatorcontrib>Harris, R Adron</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blednov, Yuri A</au><au>Benavidez, Jillian M</au><au>Black, Mendy</au><au>Leiter, Courtney R</au><au>Osterndorff-Kahanek, Elizabeth</au><au>Johnson, David</au><au>Borghese, Cecilia M</au><au>Hanrahan, Jane R</au><au>Johnston, Graham A R</au><au>Chebib, Mary</au><au>Harris, R Adron</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014</date><risdate>2014</risdate><volume>9</volume><issue>1</issue><spage>e85525</spage><epage>e85525</epage><pages>e85525-e85525</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>GABAA receptors consisting of ρ1, ρ2, or ρ3 subunits in homo- or hetero-pentamers have been studied mainly in retina but are detected in many brain regions. Receptors formed from ρ1 are inhibited by low ethanol concentrations, and family-based association analyses have linked ρ subunit genes with alcohol dependence. We determined if genetic deletion of ρ1 in mice altered in vivo ethanol effects. Null mutant male mice showed reduced ethanol consumption and preference in a two-bottle choice test with no differences in preference for saccharin or quinine. Null mutant mice of both sexes demonstrated longer duration of ethanol-induced loss of righting reflex (LORR), and males were more sensitive to ethanol-induced motor sedation. In contrast, ρ1 null mice showed faster recovery from acute motor incoordination produced by ethanol. Null mutant females were less sensitive to ethanol-induced development of conditioned taste aversion. Measurement of mRNA levels in cerebellum showed that deletion of ρ1 did not change expression of ρ2, α2, or α6 GABAA receptor subunits. (S)-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ1" antagonist), when administered to wild type mice, mimicked the changes that ethanol induced in ρ1 null mice (LORR and rotarod tests), but the ρ1 antagonist did not produce these effects in ρ1 null mice. In contrast, (R)-4-amino-cyclopent-1-enyl butylphosphinic acid ("ρ2" antagonist) did not change ethanol actions in wild type but produced effects in mice lacking ρ1 that were opposite of the effects of deleting (or inhibiting) ρ1. These results suggest that ρ1 has a predominant role in two in vivo effects of ethanol, and a role for ρ2 may be revealed when ρ1 is deleted. We also found that ethanol produces similar inhibition of function of recombinant ρ1 and ρ2 receptors. These data indicate that ethanol action on GABAA receptors containing ρ1/ρ2 subunits may be important for specific effects of ethanol in vivo.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24454882</pmid><doi>10.1371/journal.pone.0085525</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2014, Vol.9 (1), p.e85525-e85525 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1477966317 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Acids Addictions Alcohol Alcoholic beverages Animals Anxiety - psychology Biology Brain Brain research Cells, Cultured Central Nervous System Depressants - metabolism Central Nervous System Depressants - pharmacology Cerebellum Conditioning Drug dependence Ethanol Ethanol - metabolism Ethanol - pharmacology Female Females GABA Agonists - pharmacology GABA-A Receptor Antagonists - pharmacology gamma-Aminobutyric Acid - pharmacology In vivo methods and tests Ketamine - pharmacology Laboratory animals Localization Male Males Mice Mice, Transgenic Motor Activity - drug effects mRNA Pharmacy Phosphinic Acids - pharmacology Protein Subunits - genetics Protein Subunits - metabolism Quinine Receptor mechanisms Receptors Receptors, GABA-A - genetics Receptors, GABA-A - metabolism Reflex, Righting - drug effects Reflex, Startle - drug effects Retina Righting reflex Rodents Rotarod Performance Test Saccharin Spinal cord Taste aversion Xenopus laevis γ-Aminobutyric acid A receptors |
title | GABAA receptors containing ρ1 subunits contribute to in vivo effects of ethanol in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A30%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GABAA%20receptors%20containing%20%CF%811%20subunits%20contribute%20to%20in%20vivo%20effects%20of%20ethanol%20in%20mice&rft.jtitle=PloS%20one&rft.au=Blednov,%20Yuri%20A&rft.date=2014&rft.volume=9&rft.issue=1&rft.spage=e85525&rft.epage=e85525&rft.pages=e85525-e85525&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0085525&rft_dat=%3Cproquest_plos_%3E1492692572%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1477966317&rft_id=info:pmid/24454882&rft_doaj_id=oai_doaj_org_article_c3532f191fae40468dbc4d1656f56bd3&rfr_iscdi=true |