Epidemic spread on weighted networks
The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks)...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2013-12, Vol.9 (12), p.e1003352-e1003352 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003352 |
---|---|
container_issue | 12 |
container_start_page | e1003352 |
container_title | PLoS computational biology |
container_volume | 9 |
creator | Kamp, Christel Moslonka-Lefebvre, Mathieu Alizon, Samuel |
description | The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics' behavior. One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate key epidemiological variables, such as the rate of early epidemic expansion (r0) and the basic reproductive ratio (R0), from joint probability distributions of number of partners (contacts) and number of interaction events through which contacts are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases. |
doi_str_mv | 10.1371/journal.pcbi.1003352 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1477947469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357758608</galeid><doaj_id>oai_doaj_org_article_7d8bbf795e604f839816038115c31f74</doaj_id><sourcerecordid>A357758608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-c6f9077d14062dfd25e694f5b78c18359b5915db5110a9a72220ef81b3f1a73f3</originalsourceid><addsrcrecordid>eNqVkl1v0zAUhiMEYmPwDxBUggt20eITf98gVdNglSqQ-Li2nMROXdK4s9N9_HucJZsWxA2yZFvHz_seH_tk2WtAC8AcPm79IbS6WezLwi0AIYxp_iQ7BkrxnGMqnj7aH2UvYtwmhgrJnmdHOcFE5Dk9zt6f711ldq6cxX0wupr5dnZtXL3pTDVrTXftw-_4MntmdRPNq3E9yX59Pv95djFff_uyOluu5yVjvEuzlYjzCghieWWrnBomiaUFFyUITGVBJdCqoABIS83zPEfGCiiwBc2xxSfZ28F33_ioxgKjAsK5JJwwmYjVQFReb9U-uJ0Ot8prp-4CPtRKh86VjVG8EkVhuUyXQMQKLAUwhAUALTFYTpLXpzHbodiZqjRtF3QzMZ2etG6jan-lsGCACCSD08Fg85fsYrlWfQwBZVzm-KpnP4zJgr88mNipnYulaRrdGn_oa2SSUSkFTei7Aa11KsO11qfsZY-rJaacU8GQSNTiH1Qad7_pW2Ndik8EpxNBYjpz09X6EKNa_fj-H-zXKUsGtgw-xmDsw1MAUn2n3n-k6jtVjZ2aZG8ev_6D6L418R96C-CG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469659985</pqid></control><display><type>article</type><title>Epidemic spread on weighted networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kamp, Christel ; Moslonka-Lefebvre, Mathieu ; Alizon, Samuel</creator><contributor>Fraser, Christophe</contributor><creatorcontrib>Kamp, Christel ; Moslonka-Lefebvre, Mathieu ; Alizon, Samuel ; Fraser, Christophe</creatorcontrib><description>The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics' behavior. One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate key epidemiological variables, such as the rate of early epidemic expansion (r0) and the basic reproductive ratio (R0), from joint probability distributions of number of partners (contacts) and number of interaction events through which contacts are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003352</identifier><identifier>PMID: 24348225</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Behavior ; Biodiversity ; Biological research ; Biology ; Biology, Experimental ; Computer Science ; Disease ; Disease Outbreaks ; Disease transmission ; Engineering ; Epidemiologic Studies ; Epidemiology ; Humans ; Life Sciences ; Medicine ; Microbiology and Parasitology ; Modeling and Simulation ; Models, Theoretical ; Populations and Evolution ; Sexually Transmitted Diseases - epidemiology ; Social and Behavioral Sciences ; Studies ; Systematics, Phylogenetics and taxonomy</subject><ispartof>PLoS computational biology, 2013-12, Vol.9 (12), p.e1003352-e1003352</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 Kamp et al 2013 Kamp et al</rights><rights>2013 Kamp et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kamp C, Moslonka-Lefebvre M, Alizon S (2013) Epidemic Spread on Weighted Networks. PLoS Comput Biol 9(12): e1003352. doi:10.1371/journal.pcbi.1003352</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-c6f9077d14062dfd25e694f5b78c18359b5915db5110a9a72220ef81b3f1a73f3</citedby><cites>FETCH-LOGICAL-c667t-c6f9077d14062dfd25e694f5b78c18359b5915db5110a9a72220ef81b3f1a73f3</cites><orcidid>0000-0002-0779-9543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861041/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861041/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24348225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01567923$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Fraser, Christophe</contributor><creatorcontrib>Kamp, Christel</creatorcontrib><creatorcontrib>Moslonka-Lefebvre, Mathieu</creatorcontrib><creatorcontrib>Alizon, Samuel</creatorcontrib><title>Epidemic spread on weighted networks</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics' behavior. One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate key epidemiological variables, such as the rate of early epidemic expansion (r0) and the basic reproductive ratio (R0), from joint probability distributions of number of partners (contacts) and number of interaction events through which contacts are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.</description><subject>Behavior</subject><subject>Biodiversity</subject><subject>Biological research</subject><subject>Biology</subject><subject>Biology, Experimental</subject><subject>Computer Science</subject><subject>Disease</subject><subject>Disease Outbreaks</subject><subject>Disease transmission</subject><subject>Engineering</subject><subject>Epidemiologic Studies</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Microbiology and Parasitology</subject><subject>Modeling and Simulation</subject><subject>Models, Theoretical</subject><subject>Populations and Evolution</subject><subject>Sexually Transmitted Diseases - epidemiology</subject><subject>Social and Behavioral Sciences</subject><subject>Studies</subject><subject>Systematics, Phylogenetics and taxonomy</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1v0zAUhiMEYmPwDxBUggt20eITf98gVdNglSqQ-Li2nMROXdK4s9N9_HucJZsWxA2yZFvHz_seH_tk2WtAC8AcPm79IbS6WezLwi0AIYxp_iQ7BkrxnGMqnj7aH2UvYtwmhgrJnmdHOcFE5Dk9zt6f711ldq6cxX0wupr5dnZtXL3pTDVrTXftw-_4MntmdRPNq3E9yX59Pv95djFff_uyOluu5yVjvEuzlYjzCghieWWrnBomiaUFFyUITGVBJdCqoABIS83zPEfGCiiwBc2xxSfZ28F33_ioxgKjAsK5JJwwmYjVQFReb9U-uJ0Ot8prp-4CPtRKh86VjVG8EkVhuUyXQMQKLAUwhAUALTFYTpLXpzHbodiZqjRtF3QzMZ2etG6jan-lsGCACCSD08Fg85fsYrlWfQwBZVzm-KpnP4zJgr88mNipnYulaRrdGn_oa2SSUSkFTei7Aa11KsO11qfsZY-rJaacU8GQSNTiH1Qad7_pW2Ndik8EpxNBYjpz09X6EKNa_fj-H-zXKUsGtgw-xmDsw1MAUn2n3n-k6jtVjZ2aZG8ev_6D6L418R96C-CG</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Kamp, Christel</creator><creator>Moslonka-Lefebvre, Mathieu</creator><creator>Alizon, Samuel</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0779-9543</orcidid></search><sort><creationdate>20131201</creationdate><title>Epidemic spread on weighted networks</title><author>Kamp, Christel ; Moslonka-Lefebvre, Mathieu ; Alizon, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-c6f9077d14062dfd25e694f5b78c18359b5915db5110a9a72220ef81b3f1a73f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Behavior</topic><topic>Biodiversity</topic><topic>Biological research</topic><topic>Biology</topic><topic>Biology, Experimental</topic><topic>Computer Science</topic><topic>Disease</topic><topic>Disease Outbreaks</topic><topic>Disease transmission</topic><topic>Engineering</topic><topic>Epidemiologic Studies</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Microbiology and Parasitology</topic><topic>Modeling and Simulation</topic><topic>Models, Theoretical</topic><topic>Populations and Evolution</topic><topic>Sexually Transmitted Diseases - epidemiology</topic><topic>Social and Behavioral Sciences</topic><topic>Studies</topic><topic>Systematics, Phylogenetics and taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamp, Christel</creatorcontrib><creatorcontrib>Moslonka-Lefebvre, Mathieu</creatorcontrib><creatorcontrib>Alizon, Samuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamp, Christel</au><au>Moslonka-Lefebvre, Mathieu</au><au>Alizon, Samuel</au><au>Fraser, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epidemic spread on weighted networks</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>9</volume><issue>12</issue><spage>e1003352</spage><epage>e1003352</epage><pages>e1003352-e1003352</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics' behavior. One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate key epidemiological variables, such as the rate of early epidemic expansion (r0) and the basic reproductive ratio (R0), from joint probability distributions of number of partners (contacts) and number of interaction events through which contacts are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24348225</pmid><doi>10.1371/journal.pcbi.1003352</doi><orcidid>https://orcid.org/0000-0002-0779-9543</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2013-12, Vol.9 (12), p.e1003352-e1003352 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1477947469 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Behavior Biodiversity Biological research Biology Biology, Experimental Computer Science Disease Disease Outbreaks Disease transmission Engineering Epidemiologic Studies Epidemiology Humans Life Sciences Medicine Microbiology and Parasitology Modeling and Simulation Models, Theoretical Populations and Evolution Sexually Transmitted Diseases - epidemiology Social and Behavioral Sciences Studies Systematics, Phylogenetics and taxonomy |
title | Epidemic spread on weighted networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epidemic%20spread%20on%20weighted%20networks&rft.jtitle=PLoS%20computational%20biology&rft.au=Kamp,%20Christel&rft.date=2013-12-01&rft.volume=9&rft.issue=12&rft.spage=e1003352&rft.epage=e1003352&rft.pages=e1003352-e1003352&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003352&rft_dat=%3Cgale_plos_%3EA357758608%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469659985&rft_id=info:pmid/24348225&rft_galeid=A357758608&rft_doaj_id=oai_doaj_org_article_7d8bbf795e604f839816038115c31f74&rfr_iscdi=true |