Epidemic spread on weighted networks

The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2013-12, Vol.9 (12), p.e1003352-e1003352
Hauptverfasser: Kamp, Christel, Moslonka-Lefebvre, Mathieu, Alizon, Samuel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003352
container_issue 12
container_start_page e1003352
container_title PLoS computational biology
container_volume 9
creator Kamp, Christel
Moslonka-Lefebvre, Mathieu
Alizon, Samuel
description The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics' behavior. One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate key epidemiological variables, such as the rate of early epidemic expansion (r0) and the basic reproductive ratio (R0), from joint probability distributions of number of partners (contacts) and number of interaction events through which contacts are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.
doi_str_mv 10.1371/journal.pcbi.1003352
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1477947469</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A357758608</galeid><doaj_id>oai_doaj_org_article_7d8bbf795e604f839816038115c31f74</doaj_id><sourcerecordid>A357758608</sourcerecordid><originalsourceid>FETCH-LOGICAL-c667t-c6f9077d14062dfd25e694f5b78c18359b5915db5110a9a72220ef81b3f1a73f3</originalsourceid><addsrcrecordid>eNqVkl1v0zAUhiMEYmPwDxBUggt20eITf98gVdNglSqQ-Li2nMROXdK4s9N9_HucJZsWxA2yZFvHz_seH_tk2WtAC8AcPm79IbS6WezLwi0AIYxp_iQ7BkrxnGMqnj7aH2UvYtwmhgrJnmdHOcFE5Dk9zt6f711ldq6cxX0wupr5dnZtXL3pTDVrTXftw-_4MntmdRPNq3E9yX59Pv95djFff_uyOluu5yVjvEuzlYjzCghieWWrnBomiaUFFyUITGVBJdCqoABIS83zPEfGCiiwBc2xxSfZ28F33_ioxgKjAsK5JJwwmYjVQFReb9U-uJ0Ot8prp-4CPtRKh86VjVG8EkVhuUyXQMQKLAUwhAUALTFYTpLXpzHbodiZqjRtF3QzMZ2etG6jan-lsGCACCSD08Fg85fsYrlWfQwBZVzm-KpnP4zJgr88mNipnYulaRrdGn_oa2SSUSkFTei7Aa11KsO11qfsZY-rJaacU8GQSNTiH1Qad7_pW2Ndik8EpxNBYjpz09X6EKNa_fj-H-zXKUsGtgw-xmDsw1MAUn2n3n-k6jtVjZ2aZG8ev_6D6L418R96C-CG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469659985</pqid></control><display><type>article</type><title>Epidemic spread on weighted networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Kamp, Christel ; Moslonka-Lefebvre, Mathieu ; Alizon, Samuel</creator><contributor>Fraser, Christophe</contributor><creatorcontrib>Kamp, Christel ; Moslonka-Lefebvre, Mathieu ; Alizon, Samuel ; Fraser, Christophe</creatorcontrib><description>The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics' behavior. One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate key epidemiological variables, such as the rate of early epidemic expansion (r0) and the basic reproductive ratio (R0), from joint probability distributions of number of partners (contacts) and number of interaction events through which contacts are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003352</identifier><identifier>PMID: 24348225</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Behavior ; Biodiversity ; Biological research ; Biology ; Biology, Experimental ; Computer Science ; Disease ; Disease Outbreaks ; Disease transmission ; Engineering ; Epidemiologic Studies ; Epidemiology ; Humans ; Life Sciences ; Medicine ; Microbiology and Parasitology ; Modeling and Simulation ; Models, Theoretical ; Populations and Evolution ; Sexually Transmitted Diseases - epidemiology ; Social and Behavioral Sciences ; Studies ; Systematics, Phylogenetics and taxonomy</subject><ispartof>PLoS computational biology, 2013-12, Vol.9 (12), p.e1003352-e1003352</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 Kamp et al 2013 Kamp et al</rights><rights>2013 Kamp et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Kamp C, Moslonka-Lefebvre M, Alizon S (2013) Epidemic Spread on Weighted Networks. PLoS Comput Biol 9(12): e1003352. doi:10.1371/journal.pcbi.1003352</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c667t-c6f9077d14062dfd25e694f5b78c18359b5915db5110a9a72220ef81b3f1a73f3</citedby><cites>FETCH-LOGICAL-c667t-c6f9077d14062dfd25e694f5b78c18359b5915db5110a9a72220ef81b3f1a73f3</cites><orcidid>0000-0002-0779-9543</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861041/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861041/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24348225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01567923$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Fraser, Christophe</contributor><creatorcontrib>Kamp, Christel</creatorcontrib><creatorcontrib>Moslonka-Lefebvre, Mathieu</creatorcontrib><creatorcontrib>Alizon, Samuel</creatorcontrib><title>Epidemic spread on weighted networks</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics' behavior. One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate key epidemiological variables, such as the rate of early epidemic expansion (r0) and the basic reproductive ratio (R0), from joint probability distributions of number of partners (contacts) and number of interaction events through which contacts are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.</description><subject>Behavior</subject><subject>Biodiversity</subject><subject>Biological research</subject><subject>Biology</subject><subject>Biology, Experimental</subject><subject>Computer Science</subject><subject>Disease</subject><subject>Disease Outbreaks</subject><subject>Disease transmission</subject><subject>Engineering</subject><subject>Epidemiologic Studies</subject><subject>Epidemiology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Medicine</subject><subject>Microbiology and Parasitology</subject><subject>Modeling and Simulation</subject><subject>Models, Theoretical</subject><subject>Populations and Evolution</subject><subject>Sexually Transmitted Diseases - epidemiology</subject><subject>Social and Behavioral Sciences</subject><subject>Studies</subject><subject>Systematics, Phylogenetics and taxonomy</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1v0zAUhiMEYmPwDxBUggt20eITf98gVdNglSqQ-Li2nMROXdK4s9N9_HucJZsWxA2yZFvHz_seH_tk2WtAC8AcPm79IbS6WezLwi0AIYxp_iQ7BkrxnGMqnj7aH2UvYtwmhgrJnmdHOcFE5Dk9zt6f711ldq6cxX0wupr5dnZtXL3pTDVrTXftw-_4MntmdRPNq3E9yX59Pv95djFff_uyOluu5yVjvEuzlYjzCghieWWrnBomiaUFFyUITGVBJdCqoABIS83zPEfGCiiwBc2xxSfZ28F33_ioxgKjAsK5JJwwmYjVQFReb9U-uJ0Ot8prp-4CPtRKh86VjVG8EkVhuUyXQMQKLAUwhAUALTFYTpLXpzHbodiZqjRtF3QzMZ2etG6jan-lsGCACCSD08Fg85fsYrlWfQwBZVzm-KpnP4zJgr88mNipnYulaRrdGn_oa2SSUSkFTei7Aa11KsO11qfsZY-rJaacU8GQSNTiH1Qad7_pW2Ndik8EpxNBYjpz09X6EKNa_fj-H-zXKUsGtgw-xmDsw1MAUn2n3n-k6jtVjZ2aZG8ev_6D6L418R96C-CG</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Kamp, Christel</creator><creator>Moslonka-Lefebvre, Mathieu</creator><creator>Alizon, Samuel</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0779-9543</orcidid></search><sort><creationdate>20131201</creationdate><title>Epidemic spread on weighted networks</title><author>Kamp, Christel ; Moslonka-Lefebvre, Mathieu ; Alizon, Samuel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c667t-c6f9077d14062dfd25e694f5b78c18359b5915db5110a9a72220ef81b3f1a73f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Behavior</topic><topic>Biodiversity</topic><topic>Biological research</topic><topic>Biology</topic><topic>Biology, Experimental</topic><topic>Computer Science</topic><topic>Disease</topic><topic>Disease Outbreaks</topic><topic>Disease transmission</topic><topic>Engineering</topic><topic>Epidemiologic Studies</topic><topic>Epidemiology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Medicine</topic><topic>Microbiology and Parasitology</topic><topic>Modeling and Simulation</topic><topic>Models, Theoretical</topic><topic>Populations and Evolution</topic><topic>Sexually Transmitted Diseases - epidemiology</topic><topic>Social and Behavioral Sciences</topic><topic>Studies</topic><topic>Systematics, Phylogenetics and taxonomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kamp, Christel</creatorcontrib><creatorcontrib>Moslonka-Lefebvre, Mathieu</creatorcontrib><creatorcontrib>Alizon, Samuel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kamp, Christel</au><au>Moslonka-Lefebvre, Mathieu</au><au>Alizon, Samuel</au><au>Fraser, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epidemic spread on weighted networks</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>9</volume><issue>12</issue><spage>e1003352</spage><epage>e1003352</epage><pages>e1003352-e1003352</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The contact structure between hosts shapes disease spread. Most network-based models used in epidemiology tend to ignore heterogeneity in the weighting of contacts between two individuals. However, this assumption is known to be at odds with the data for many networks (e.g. sexual contact networks) and to have a critical influence on epidemics' behavior. One of the reasons why models usually ignore heterogeneity in transmission is that we currently lack tools to analyze weighted networks, such that most studies rely on numerical simulations. Here, we present a novel framework to estimate key epidemiological variables, such as the rate of early epidemic expansion (r0) and the basic reproductive ratio (R0), from joint probability distributions of number of partners (contacts) and number of interaction events through which contacts are weighted. These distributions are much easier to infer than the exact shape of the network, which makes the approach widely applicable. The framework also allows for a derivation of the full time course of epidemic prevalence and contact behaviour, which we validate with numerical simulations on networks. Overall, incorporating more realistic contact networks into epidemiological models can improve our understanding of the emergence and spread of infectious diseases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24348225</pmid><doi>10.1371/journal.pcbi.1003352</doi><orcidid>https://orcid.org/0000-0002-0779-9543</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2013-12, Vol.9 (12), p.e1003352-e1003352
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1477947469
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Behavior
Biodiversity
Biological research
Biology
Biology, Experimental
Computer Science
Disease
Disease Outbreaks
Disease transmission
Engineering
Epidemiologic Studies
Epidemiology
Humans
Life Sciences
Medicine
Microbiology and Parasitology
Modeling and Simulation
Models, Theoretical
Populations and Evolution
Sexually Transmitted Diseases - epidemiology
Social and Behavioral Sciences
Studies
Systematics, Phylogenetics and taxonomy
title Epidemic spread on weighted networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T22%3A41%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epidemic%20spread%20on%20weighted%20networks&rft.jtitle=PLoS%20computational%20biology&rft.au=Kamp,%20Christel&rft.date=2013-12-01&rft.volume=9&rft.issue=12&rft.spage=e1003352&rft.epage=e1003352&rft.pages=e1003352-e1003352&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003352&rft_dat=%3Cgale_plos_%3EA357758608%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469659985&rft_id=info:pmid/24348225&rft_galeid=A357758608&rft_doaj_id=oai_doaj_org_article_7d8bbf795e604f839816038115c31f74&rfr_iscdi=true