Decision making under uncertainty: a quasimetric approach
We propose a new approach for solving a class of discrete decision making problems under uncertainty with positive cost. This issue concerns multiple and diverse fields such as engineering, economics, artificial intelligence, cognitive science and many others. Basically, an agent has to choose a sin...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-12, Vol.8 (12), p.e83411-e83411 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e83411 |
---|---|
container_issue | 12 |
container_start_page | e83411 |
container_title | PloS one |
container_volume | 8 |
creator | N'Guyen, Steve Moulin-Frier, Clément Droulez, Jacques |
description | We propose a new approach for solving a class of discrete decision making problems under uncertainty with positive cost. This issue concerns multiple and diverse fields such as engineering, economics, artificial intelligence, cognitive science and many others. Basically, an agent has to choose a single or series of actions from a set of options, without knowing for sure their consequences. Schematically, two main approaches have been followed: either the agent learns which option is the correct one to choose in a given situation by trial and error, or the agent already has some knowledge on the possible consequences of his decisions; this knowledge being generally expressed as a conditional probability distribution. In the latter case, several optimal or suboptimal methods have been proposed to exploit this uncertain knowledge in various contexts. In this work, we propose following a different approach, based on the geometric intuition of distance. More precisely, we define a goal independent quasimetric structure on the state space, taking into account both cost function and transition probability. We then compare precision and computation time with classical approaches. |
doi_str_mv | 10.1371/journal.pone.0083411 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1470083051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478204334</galeid><doaj_id>oai_doaj_org_article_9a6bd0a93ee94f4abfd75d010d9e199c</doaj_id><sourcerecordid>A478204334</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-9b377c118e1ddd2ffc6a5eb5ccd8de9ec78bf238f7f0681ad8173c60d1ca38ea3</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLts_2BsgcFYL5JJlm1ZuxiE7qOBQGFft-JYOnaU2VYq2WX995MXt8SlF8Ngi-PnfaVzdE4UvaRkSRmn73e2dy3Uy71tcUlIzhJKH0WnVLB4kcWEPT5an0TPvN8RkrI8y55GJ3HCeJYJfhqJT6iMN7adN_DbtNW8bzW68FboOjBtd_NhDvOrHrxpsHNGzWG_dxbU9nn0pITa44vxO4t-fvn84_xisbn8uj5fbRaKx1m3EAXjXFGaI9Vax2WpMkixSJXSuUaBiudFGbO85CXJcgo6p5ypjGiqgOUIbBa9Pvjua-vlmLWXNOFD0iSlgVgfCG1hJ_fONOBupAUj_wWsqyS4zqgapYCs0AQEQxRJmUBRap5qQokWSIVQwevjuFtfNKgVtp2DemI6_dOarazstQyVFZynweDsYLC9J7tYbeQQI0TEMc_49XDwd-Nmzl716DvZGK-wrqFF2w85CsJDkuG6ZtGbe-jDlRipCkKypi1tOKMaTOUq4XlMEsYGr-UDVHg0NkaFdipNiE8EZxNBYDr801XQey_X37_9P3v5a8q-PWK3CHW39bbuu9CPfgomB1A5673D8q6ylMhhGm6rIYdpkOM0BNmr48u8E922P_sLgHMEIQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1470083051</pqid></control><display><type>article</type><title>Decision making under uncertainty: a quasimetric approach</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>N'Guyen, Steve ; Moulin-Frier, Clément ; Droulez, Jacques</creator><contributor>Paris, Matteo G. A.</contributor><creatorcontrib>N'Guyen, Steve ; Moulin-Frier, Clément ; Droulez, Jacques ; Paris, Matteo G. A.</creatorcontrib><description>We propose a new approach for solving a class of discrete decision making problems under uncertainty with positive cost. This issue concerns multiple and diverse fields such as engineering, economics, artificial intelligence, cognitive science and many others. Basically, an agent has to choose a single or series of actions from a set of options, without knowing for sure their consequences. Schematically, two main approaches have been followed: either the agent learns which option is the correct one to choose in a given situation by trial and error, or the agent already has some knowledge on the possible consequences of his decisions; this knowledge being generally expressed as a conditional probability distribution. In the latter case, several optimal or suboptimal methods have been proposed to exploit this uncertain knowledge in various contexts. In this work, we propose following a different approach, based on the geometric intuition of distance. More precisely, we define a goal independent quasimetric structure on the state space, taking into account both cost function and transition probability. We then compare precision and computation time with classical approaches.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0083411</identifier><identifier>PMID: 24376697</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial Intelligence ; Cognitive ability ; Cognitive science ; Computer Science ; Conditional probability ; Decision Making ; Economic models ; Error correction ; International conferences ; Markov analysis ; Mathematics ; Methods ; Neuroscience ; Optimization and Control ; Planning ; Probability ; Probability distribution ; Random variables ; Robots ; Traffic congestion ; Uncertainty</subject><ispartof>PloS one, 2013-12, Vol.8 (12), p.e83411-e83411</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 N'Guyen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 N'Guyen et al 2013 N'Guyen et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-9b377c118e1ddd2ffc6a5eb5ccd8de9ec78bf238f7f0681ad8173c60d1ca38ea3</citedby><cites>FETCH-LOGICAL-c726t-9b377c118e1ddd2ffc6a5eb5ccd8de9ec78bf238f7f0681ad8173c60d1ca38ea3</cites><orcidid>0000-0002-7206-7381 ; 0000-0002-7258-7256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869775/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3869775/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24376697$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00922767$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Paris, Matteo G. A.</contributor><creatorcontrib>N'Guyen, Steve</creatorcontrib><creatorcontrib>Moulin-Frier, Clément</creatorcontrib><creatorcontrib>Droulez, Jacques</creatorcontrib><title>Decision making under uncertainty: a quasimetric approach</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>We propose a new approach for solving a class of discrete decision making problems under uncertainty with positive cost. This issue concerns multiple and diverse fields such as engineering, economics, artificial intelligence, cognitive science and many others. Basically, an agent has to choose a single or series of actions from a set of options, without knowing for sure their consequences. Schematically, two main approaches have been followed: either the agent learns which option is the correct one to choose in a given situation by trial and error, or the agent already has some knowledge on the possible consequences of his decisions; this knowledge being generally expressed as a conditional probability distribution. In the latter case, several optimal or suboptimal methods have been proposed to exploit this uncertain knowledge in various contexts. In this work, we propose following a different approach, based on the geometric intuition of distance. More precisely, we define a goal independent quasimetric structure on the state space, taking into account both cost function and transition probability. We then compare precision and computation time with classical approaches.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Cognitive ability</subject><subject>Cognitive science</subject><subject>Computer Science</subject><subject>Conditional probability</subject><subject>Decision Making</subject><subject>Economic models</subject><subject>Error correction</subject><subject>International conferences</subject><subject>Markov analysis</subject><subject>Mathematics</subject><subject>Methods</subject><subject>Neuroscience</subject><subject>Optimization and Control</subject><subject>Planning</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Robots</subject><subject>Traffic congestion</subject><subject>Uncertainty</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLts_2BsgcFYL5JJlm1ZuxiE7qOBQGFft-JYOnaU2VYq2WX995MXt8SlF8Ngi-PnfaVzdE4UvaRkSRmn73e2dy3Uy71tcUlIzhJKH0WnVLB4kcWEPT5an0TPvN8RkrI8y55GJ3HCeJYJfhqJT6iMN7adN_DbtNW8bzW68FboOjBtd_NhDvOrHrxpsHNGzWG_dxbU9nn0pITa44vxO4t-fvn84_xisbn8uj5fbRaKx1m3EAXjXFGaI9Vax2WpMkixSJXSuUaBiudFGbO85CXJcgo6p5ypjGiqgOUIbBa9Pvjua-vlmLWXNOFD0iSlgVgfCG1hJ_fONOBupAUj_wWsqyS4zqgapYCs0AQEQxRJmUBRap5qQokWSIVQwevjuFtfNKgVtp2DemI6_dOarazstQyVFZynweDsYLC9J7tYbeQQI0TEMc_49XDwd-Nmzl716DvZGK-wrqFF2w85CsJDkuG6ZtGbe-jDlRipCkKypi1tOKMaTOUq4XlMEsYGr-UDVHg0NkaFdipNiE8EZxNBYDr801XQey_X37_9P3v5a8q-PWK3CHW39bbuu9CPfgomB1A5673D8q6ylMhhGm6rIYdpkOM0BNmr48u8E922P_sLgHMEIQ</recordid><startdate>20131220</startdate><enddate>20131220</enddate><creator>N'Guyen, Steve</creator><creator>Moulin-Frier, Clément</creator><creator>Droulez, Jacques</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7206-7381</orcidid><orcidid>https://orcid.org/0000-0002-7258-7256</orcidid></search><sort><creationdate>20131220</creationdate><title>Decision making under uncertainty: a quasimetric approach</title><author>N'Guyen, Steve ; Moulin-Frier, Clément ; Droulez, Jacques</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-9b377c118e1ddd2ffc6a5eb5ccd8de9ec78bf238f7f0681ad8173c60d1ca38ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Cognitive ability</topic><topic>Cognitive science</topic><topic>Computer Science</topic><topic>Conditional probability</topic><topic>Decision Making</topic><topic>Economic models</topic><topic>Error correction</topic><topic>International conferences</topic><topic>Markov analysis</topic><topic>Mathematics</topic><topic>Methods</topic><topic>Neuroscience</topic><topic>Optimization and Control</topic><topic>Planning</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Robots</topic><topic>Traffic congestion</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>N'Guyen, Steve</creatorcontrib><creatorcontrib>Moulin-Frier, Clément</creatorcontrib><creatorcontrib>Droulez, Jacques</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>N'Guyen, Steve</au><au>Moulin-Frier, Clément</au><au>Droulez, Jacques</au><au>Paris, Matteo G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision making under uncertainty: a quasimetric approach</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-12-20</date><risdate>2013</risdate><volume>8</volume><issue>12</issue><spage>e83411</spage><epage>e83411</epage><pages>e83411-e83411</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>We propose a new approach for solving a class of discrete decision making problems under uncertainty with positive cost. This issue concerns multiple and diverse fields such as engineering, economics, artificial intelligence, cognitive science and many others. Basically, an agent has to choose a single or series of actions from a set of options, without knowing for sure their consequences. Schematically, two main approaches have been followed: either the agent learns which option is the correct one to choose in a given situation by trial and error, or the agent already has some knowledge on the possible consequences of his decisions; this knowledge being generally expressed as a conditional probability distribution. In the latter case, several optimal or suboptimal methods have been proposed to exploit this uncertain knowledge in various contexts. In this work, we propose following a different approach, based on the geometric intuition of distance. More precisely, we define a goal independent quasimetric structure on the state space, taking into account both cost function and transition probability. We then compare precision and computation time with classical approaches.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24376697</pmid><doi>10.1371/journal.pone.0083411</doi><tpages>e83411</tpages><orcidid>https://orcid.org/0000-0002-7206-7381</orcidid><orcidid>https://orcid.org/0000-0002-7258-7256</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-12, Vol.8 (12), p.e83411-e83411 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1470083051 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial Intelligence Cognitive ability Cognitive science Computer Science Conditional probability Decision Making Economic models Error correction International conferences Markov analysis Mathematics Methods Neuroscience Optimization and Control Planning Probability Probability distribution Random variables Robots Traffic congestion Uncertainty |
title | Decision making under uncertainty: a quasimetric approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision%20making%20under%20uncertainty:%20a%20quasimetric%20approach&rft.jtitle=PloS%20one&rft.au=N'Guyen,%20Steve&rft.date=2013-12-20&rft.volume=8&rft.issue=12&rft.spage=e83411&rft.epage=e83411&rft.pages=e83411-e83411&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0083411&rft_dat=%3Cgale_plos_%3EA478204334%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1470083051&rft_id=info:pmid/24376697&rft_galeid=A478204334&rft_doaj_id=oai_doaj_org_article_9a6bd0a93ee94f4abfd75d010d9e199c&rfr_iscdi=true |