Low-rank regularization for learning gene expression programs
Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regular...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-12, Vol.8 (12), p.e82146-e82146 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e82146 |
---|---|
container_issue | 12 |
container_start_page | e82146 |
container_title | PloS one |
container_volume | 8 |
creator | Ye, Guibo Tang, Mengfan Cai, Jian-Feng Nie, Qing Xie, Xiaohui |
description | Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective algorithms for inferring gene expression programs. Here we propose a new form of regulation that constrains the number of independent connectivity patterns between regulators and targets, motivated by the modular design of gene regulatory programs and the belief that the total number of independent regulatory modules should be small. We formulate a multi-target linear regression framework to incorporate this type of regulation, in which the number of independent connectivity patterns is expressed as the rank of the connectivity matrix between regulators and targets. We then generalize the linear framework to nonlinear cases, and prove that the generalized low-rank regularization model is still convex. Efficient algorithms are derived to solve both the linear and nonlinear low-rank regularized problems. Finally, we test the algorithms on three gene expression datasets, and show that the low-rank regularization improves the accuracy of gene expression prediction in these three datasets. |
doi_str_mv | 10.1371/journal.pone.0082146 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1468886286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478243029</galeid><doaj_id>oai_doaj_org_article_413cb5c9b34a4dda9aa698aa417cebe0</doaj_id><sourcerecordid>A478243029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5fe4ce46712db0ae8d26132e1821ac9e162efdc47140ccbacc036e66dbbc98443</originalsourceid><addsrcrecordid>eNqNktuO0zAQhiMEYpeFN0BQCQnBRYtPdZwLkFYrDpUqrcTp1po4k9TFjYudwMLT49DsqkF7gXxhy_PN75nxn2WPKVlQntNXW9-HFtxi71tcEKIYFfJOdkoLzuaSEX736HySPYhxS8iSKynvZydM8KWiQp1mr9f-5zxA-20WsOkdBPsbOuvbWe3DzCGE1rbNrMEWZ3i1DxjjENwH3wTYxYfZvRpcxEfjfpZ9eff288WH-fry_erifD03smDdfFmjMChkTllVEkBVMUk5Q5qKBlMglQzryoicCmJMCcYQLlHKqixNoYTgZ9nTg-7e-ajHzqNOHSulJFMyEasDUXnY6n2wOwi_tAer_1740GgInTUOtaDclEtTlFyAqCooAGShAATNDZZIktab8bW-3GFlsO0CuInoNNLajW78Dz1Ml7JB4MUoEPz3HmOndzYadA5a9P1Qd0FyLnORJ_TZP-jt3Y1UA6kB29Y-vWsGUX0ucpW-k7AiUYtbqLQq3FmTbFLbdD9JeDlJSEyHV10DfYx69enj_7OXX6fs8yN2g-C6TfSuH4wVp6A4gCb4GAPWN0OmRA8uv56GHlyuR5entCfHH3STdG1r_gec5PgB</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468886286</pqid></control><display><type>article</type><title>Low-rank regularization for learning gene expression programs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ye, Guibo ; Tang, Mengfan ; Cai, Jian-Feng ; Nie, Qing ; Xie, Xiaohui</creator><contributor>Muldoon, Mark R.</contributor><creatorcontrib>Ye, Guibo ; Tang, Mengfan ; Cai, Jian-Feng ; Nie, Qing ; Xie, Xiaohui ; Muldoon, Mark R.</creatorcontrib><description>Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective algorithms for inferring gene expression programs. Here we propose a new form of regulation that constrains the number of independent connectivity patterns between regulators and targets, motivated by the modular design of gene regulatory programs and the belief that the total number of independent regulatory modules should be small. We formulate a multi-target linear regression framework to incorporate this type of regulation, in which the number of independent connectivity patterns is expressed as the rank of the connectivity matrix between regulators and targets. We then generalize the linear framework to nonlinear cases, and prove that the generalized low-rank regularization model is still convex. Efficient algorithms are derived to solve both the linear and nonlinear low-rank regularized problems. Finally, we test the algorithms on three gene expression datasets, and show that the low-rank regularization improves the accuracy of gene expression prediction in these three datasets.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0082146</identifier><identifier>PMID: 24358148</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial intelligence ; Biological effects ; Computational mathematics ; Computer science ; Datasets ; Gene Expression ; Gene Expression Regulation ; Gene regulation ; Genes ; Humans ; Mathematical analysis ; Matrix methods ; Models, Genetic ; Modular design ; Ordinary differential equations ; Principal components analysis ; Regularization ; Software ; Sparsity ; Teaching methods</subject><ispartof>PloS one, 2013-12, Vol.8 (12), p.e82146-e82146</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Ye et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Ye et al 2013 Ye et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5fe4ce46712db0ae8d26132e1821ac9e162efdc47140ccbacc036e66dbbc98443</citedby><cites>FETCH-LOGICAL-c692t-5fe4ce46712db0ae8d26132e1821ac9e162efdc47140ccbacc036e66dbbc98443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866120/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3866120/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24358148$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Muldoon, Mark R.</contributor><creatorcontrib>Ye, Guibo</creatorcontrib><creatorcontrib>Tang, Mengfan</creatorcontrib><creatorcontrib>Cai, Jian-Feng</creatorcontrib><creatorcontrib>Nie, Qing</creatorcontrib><creatorcontrib>Xie, Xiaohui</creatorcontrib><title>Low-rank regularization for learning gene expression programs</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective algorithms for inferring gene expression programs. Here we propose a new form of regulation that constrains the number of independent connectivity patterns between regulators and targets, motivated by the modular design of gene regulatory programs and the belief that the total number of independent regulatory modules should be small. We formulate a multi-target linear regression framework to incorporate this type of regulation, in which the number of independent connectivity patterns is expressed as the rank of the connectivity matrix between regulators and targets. We then generalize the linear framework to nonlinear cases, and prove that the generalized low-rank regularization model is still convex. Efficient algorithms are derived to solve both the linear and nonlinear low-rank regularized problems. Finally, we test the algorithms on three gene expression datasets, and show that the low-rank regularization improves the accuracy of gene expression prediction in these three datasets.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biological effects</subject><subject>Computational mathematics</subject><subject>Computer science</subject><subject>Datasets</subject><subject>Gene Expression</subject><subject>Gene Expression Regulation</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Humans</subject><subject>Mathematical analysis</subject><subject>Matrix methods</subject><subject>Models, Genetic</subject><subject>Modular design</subject><subject>Ordinary differential equations</subject><subject>Principal components analysis</subject><subject>Regularization</subject><subject>Software</subject><subject>Sparsity</subject><subject>Teaching methods</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNktuO0zAQhiMEYpeFN0BQCQnBRYtPdZwLkFYrDpUqrcTp1po4k9TFjYudwMLT49DsqkF7gXxhy_PN75nxn2WPKVlQntNXW9-HFtxi71tcEKIYFfJOdkoLzuaSEX736HySPYhxS8iSKynvZydM8KWiQp1mr9f-5zxA-20WsOkdBPsbOuvbWe3DzCGE1rbNrMEWZ3i1DxjjENwH3wTYxYfZvRpcxEfjfpZ9eff288WH-fry_erifD03smDdfFmjMChkTllVEkBVMUk5Q5qKBlMglQzryoicCmJMCcYQLlHKqixNoYTgZ9nTg-7e-ajHzqNOHSulJFMyEasDUXnY6n2wOwi_tAer_1740GgInTUOtaDclEtTlFyAqCooAGShAATNDZZIktab8bW-3GFlsO0CuInoNNLajW78Dz1Ml7JB4MUoEPz3HmOndzYadA5a9P1Qd0FyLnORJ_TZP-jt3Y1UA6kB29Y-vWsGUX0ucpW-k7AiUYtbqLQq3FmTbFLbdD9JeDlJSEyHV10DfYx69enj_7OXX6fs8yN2g-C6TfSuH4wVp6A4gCb4GAPWN0OmRA8uv56GHlyuR5entCfHH3STdG1r_gec5PgB</recordid><startdate>20131217</startdate><enddate>20131217</enddate><creator>Ye, Guibo</creator><creator>Tang, Mengfan</creator><creator>Cai, Jian-Feng</creator><creator>Nie, Qing</creator><creator>Xie, Xiaohui</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131217</creationdate><title>Low-rank regularization for learning gene expression programs</title><author>Ye, Guibo ; Tang, Mengfan ; Cai, Jian-Feng ; Nie, Qing ; Xie, Xiaohui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5fe4ce46712db0ae8d26132e1821ac9e162efdc47140ccbacc036e66dbbc98443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biological effects</topic><topic>Computational mathematics</topic><topic>Computer science</topic><topic>Datasets</topic><topic>Gene Expression</topic><topic>Gene Expression Regulation</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Humans</topic><topic>Mathematical analysis</topic><topic>Matrix methods</topic><topic>Models, Genetic</topic><topic>Modular design</topic><topic>Ordinary differential equations</topic><topic>Principal components analysis</topic><topic>Regularization</topic><topic>Software</topic><topic>Sparsity</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Guibo</creatorcontrib><creatorcontrib>Tang, Mengfan</creatorcontrib><creatorcontrib>Cai, Jian-Feng</creatorcontrib><creatorcontrib>Nie, Qing</creatorcontrib><creatorcontrib>Xie, Xiaohui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Guibo</au><au>Tang, Mengfan</au><au>Cai, Jian-Feng</au><au>Nie, Qing</au><au>Xie, Xiaohui</au><au>Muldoon, Mark R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low-rank regularization for learning gene expression programs</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-12-17</date><risdate>2013</risdate><volume>8</volume><issue>12</issue><spage>e82146</spage><epage>e82146</epage><pages>e82146-e82146</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Learning gene expression programs directly from a set of observations is challenging due to the complexity of gene regulation, high noise of experimental measurements, and insufficient number of experimental measurements. Imposing additional constraints with strong and biologically motivated regularizations is critical in developing reliable and effective algorithms for inferring gene expression programs. Here we propose a new form of regulation that constrains the number of independent connectivity patterns between regulators and targets, motivated by the modular design of gene regulatory programs and the belief that the total number of independent regulatory modules should be small. We formulate a multi-target linear regression framework to incorporate this type of regulation, in which the number of independent connectivity patterns is expressed as the rank of the connectivity matrix between regulators and targets. We then generalize the linear framework to nonlinear cases, and prove that the generalized low-rank regularization model is still convex. Efficient algorithms are derived to solve both the linear and nonlinear low-rank regularized problems. Finally, we test the algorithms on three gene expression datasets, and show that the low-rank regularization improves the accuracy of gene expression prediction in these three datasets.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24358148</pmid><doi>10.1371/journal.pone.0082146</doi><tpages>e82146</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-12, Vol.8 (12), p.e82146-e82146 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1468886286 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial intelligence Biological effects Computational mathematics Computer science Datasets Gene Expression Gene Expression Regulation Gene regulation Genes Humans Mathematical analysis Matrix methods Models, Genetic Modular design Ordinary differential equations Principal components analysis Regularization Software Sparsity Teaching methods |
title | Low-rank regularization for learning gene expression programs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T01%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low-rank%20regularization%20for%20learning%20gene%20expression%20programs&rft.jtitle=PloS%20one&rft.au=Ye,%20Guibo&rft.date=2013-12-17&rft.volume=8&rft.issue=12&rft.spage=e82146&rft.epage=e82146&rft.pages=e82146-e82146&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0082146&rft_dat=%3Cgale_plos_%3EA478243029%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468886286&rft_id=info:pmid/24358148&rft_galeid=A478243029&rft_doaj_id=oai_doaj_org_article_413cb5c9b34a4dda9aa698aa417cebe0&rfr_iscdi=true |