DUX4 binding to retroelements creates promoters that are active in FSHD muscle and testis
The human double-homeodomain retrogene DUX4 is expressed in the testis and epigenetically repressed in somatic tissues. Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations that decrease the epigenetic repression of DUX4 in somatic tissues and result in mis-expression of this transcr...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2013-11, Vol.9 (11), p.e1003947-e1003947 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003947 |
---|---|
container_issue | 11 |
container_start_page | e1003947 |
container_title | PLoS genetics |
container_volume | 9 |
creator | Young, Janet M Whiddon, Jennifer L Yao, Zizhen Kasinathan, Bhavatharini Snider, Lauren Geng, Linda N Balog, Judit Tawil, Rabi van der Maarel, Silvère M Tapscott, Stephen J |
description | The human double-homeodomain retrogene DUX4 is expressed in the testis and epigenetically repressed in somatic tissues. Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations that decrease the epigenetic repression of DUX4 in somatic tissues and result in mis-expression of this transcription factor in skeletal muscle. DUX4 binds sites in the human genome that contain a double-homeobox sequence motif, including sites in unique regions of the genome as well as many sites in repetitive elements. Using ChIP-seq and RNA-seq on myoblasts transduced with DUX4 we show that DUX4 binds and activates transcription of mammalian apparent LTR-retrotransposons (MaLRs), endogenous retrovirus (ERVL and ERVK) elements, and pericentromeric satellite HSATII sequences. Some DUX4-activated MaLR and ERV elements create novel promoters for genes, long non-coding RNAs, and antisense transcripts. Many of these novel transcripts are expressed in FSHD muscle cells but not control cells, and thus might contribute to FSHD pathology. For example, HEY1, a repressor of myogenesis, is activated by DUX4 through a MaLR promoter. DUX4-bound motifs, including those in repetitive elements, show evolutionary conservation and some repeat-initiated transcripts are expressed in healthy testis, the normal expression site of DUX4, but more rarely in other somatic tissues. Testis expression patterns are known to have evolved rapidly in mammals, but the mechanisms behind this rapid change have not yet been identified: our results suggest that mobilization of MaLR and ERV elements during mammalian evolution altered germline gene expression patterns through transcriptional activation by DUX4. Our findings demonstrate a role for DUX4 and repetitive elements in mammalian germline evolution and in FSHD muscular dystrophy. |
doi_str_mv | 10.1371/journal.pgen.1003947 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1468591904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A353105453</galeid><doaj_id>oai_doaj_org_article_4cba495a2a894ec88bd1352324c27d18</doaj_id><sourcerecordid>A353105453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c698t-5eedf2862c267ccaa7db1b34ab6d0b4efe46074a975b9edac7f6fc5222f91db23</originalsourceid><addsrcrecordid>eNqVk11rFDEUhgdRbK3-A9GAIHqx6-RrMnNTKK21C8WCtaJXIZM5M5tlJlmTTNF_b7a7LTvghZKLhJPnfXM4JyfLXuJ8jqnAH1Zu9Fb183UHdo7znFZMPMoOMed0JljOHu-dD7JnIawSw8tKPM0OCCOizCk-zH6c3XxnqDa2MbZD0SEP0TvoYQAbA9IeVISA1t4NLoIPKC5VRMoDUjqaW0DGovPrizM0jEH3KWoblATRhOfZk1b1AV7s9qPs5vzj19OL2eXVp8XpyeVMF1UZZxygaUlZEE0KobVSoqlxTZmqiyavGbTAilwwVQleV9AoLdqi1ZwQ0la4qQk9yl5vfde9C3JXlSAxK0pe4SpniVhsicaplVx7Myj_Wzpl5F3A-U4qH01KXzJdK1ZxRVRZMdBlWTeYckIJ00Q0uExex7vXxnqARqcqedVPTKc31ixl524lLWkh8ioZvNsZePdzTJWSgwka-l5ZcONd3gSXQhQb9M0W7VRKzdjWJUe9weUJ5RTnnHGaqPlfqLQaGIx2FlqT4hPB-4kgMRF-xU6NIcjF9Zf_YD__O3v1bcq-3WOXoPq4DK4fo3E2TEG2BbV3IXhoH0qNc7mZg_uOy80cyN0cJNmr_TY9iO4_Pv0Drr8ChQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462187769</pqid></control><display><type>article</type><title>DUX4 binding to retroelements creates promoters that are active in FSHD muscle and testis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Young, Janet M ; Whiddon, Jennifer L ; Yao, Zizhen ; Kasinathan, Bhavatharini ; Snider, Lauren ; Geng, Linda N ; Balog, Judit ; Tawil, Rabi ; van der Maarel, Silvère M ; Tapscott, Stephen J</creator><creatorcontrib>Young, Janet M ; Whiddon, Jennifer L ; Yao, Zizhen ; Kasinathan, Bhavatharini ; Snider, Lauren ; Geng, Linda N ; Balog, Judit ; Tawil, Rabi ; van der Maarel, Silvère M ; Tapscott, Stephen J</creatorcontrib><description>The human double-homeodomain retrogene DUX4 is expressed in the testis and epigenetically repressed in somatic tissues. Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations that decrease the epigenetic repression of DUX4 in somatic tissues and result in mis-expression of this transcription factor in skeletal muscle. DUX4 binds sites in the human genome that contain a double-homeobox sequence motif, including sites in unique regions of the genome as well as many sites in repetitive elements. Using ChIP-seq and RNA-seq on myoblasts transduced with DUX4 we show that DUX4 binds and activates transcription of mammalian apparent LTR-retrotransposons (MaLRs), endogenous retrovirus (ERVL and ERVK) elements, and pericentromeric satellite HSATII sequences. Some DUX4-activated MaLR and ERV elements create novel promoters for genes, long non-coding RNAs, and antisense transcripts. Many of these novel transcripts are expressed in FSHD muscle cells but not control cells, and thus might contribute to FSHD pathology. For example, HEY1, a repressor of myogenesis, is activated by DUX4 through a MaLR promoter. DUX4-bound motifs, including those in repetitive elements, show evolutionary conservation and some repeat-initiated transcripts are expressed in healthy testis, the normal expression site of DUX4, but more rarely in other somatic tissues. Testis expression patterns are known to have evolved rapidly in mammals, but the mechanisms behind this rapid change have not yet been identified: our results suggest that mobilization of MaLR and ERV elements during mammalian evolution altered germline gene expression patterns through transcriptional activation by DUX4. Our findings demonstrate a role for DUX4 and repetitive elements in mammalian germline evolution and in FSHD muscular dystrophy.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003947</identifier><identifier>PMID: 24278031</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Binding sites ; Binding sites (Biochemistry) ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; Cell Line ; Epigenetic inheritance ; Epigenetics ; Estimates ; Experiments ; Gene expression ; Gene Expression Regulation, Developmental ; Genetic aspects ; Genomes ; Genomics ; Germ Cells - metabolism ; Homeodomain Proteins - genetics ; Homeodomain Proteins - metabolism ; Humans ; Male ; Mammals ; Muscle Development - genetics ; Muscle Fibers, Skeletal - metabolism ; Muscle Fibers, Skeletal - pathology ; Muscular dystrophy ; Muscular Dystrophy, Facioscapulohumeral - genetics ; Muscular Dystrophy, Facioscapulohumeral - metabolism ; Muscular Dystrophy, Facioscapulohumeral - pathology ; Musculoskeletal system ; Myoblasts - metabolism ; Physiological aspects ; Promoter Regions, Genetic ; Promoters (Genetics) ; Protein Binding ; Repetitive Sequences, Nucleic Acid ; Retroelements - genetics ; Testis - growth & development ; Testis - metabolism</subject><ispartof>PLoS genetics, 2013-11, Vol.9 (11), p.e1003947-e1003947</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Young et al 2013 Young et al</rights><rights>2013 Young et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Young JM, Whiddon JL, Yao Z, Kasinathan B, Snider L, et al. (2013) DUX4 Binding to Retroelements Creates Promoters That Are Active in FSHD Muscle and Testis. PLoS Genet 9(11): e1003947. doi:10.1371/journal.pgen.1003947</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c698t-5eedf2862c267ccaa7db1b34ab6d0b4efe46074a975b9edac7f6fc5222f91db23</citedby><cites>FETCH-LOGICAL-c698t-5eedf2862c267ccaa7db1b34ab6d0b4efe46074a975b9edac7f6fc5222f91db23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836709/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836709/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24278031$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Janet M</creatorcontrib><creatorcontrib>Whiddon, Jennifer L</creatorcontrib><creatorcontrib>Yao, Zizhen</creatorcontrib><creatorcontrib>Kasinathan, Bhavatharini</creatorcontrib><creatorcontrib>Snider, Lauren</creatorcontrib><creatorcontrib>Geng, Linda N</creatorcontrib><creatorcontrib>Balog, Judit</creatorcontrib><creatorcontrib>Tawil, Rabi</creatorcontrib><creatorcontrib>van der Maarel, Silvère M</creatorcontrib><creatorcontrib>Tapscott, Stephen J</creatorcontrib><title>DUX4 binding to retroelements creates promoters that are active in FSHD muscle and testis</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>The human double-homeodomain retrogene DUX4 is expressed in the testis and epigenetically repressed in somatic tissues. Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations that decrease the epigenetic repression of DUX4 in somatic tissues and result in mis-expression of this transcription factor in skeletal muscle. DUX4 binds sites in the human genome that contain a double-homeobox sequence motif, including sites in unique regions of the genome as well as many sites in repetitive elements. Using ChIP-seq and RNA-seq on myoblasts transduced with DUX4 we show that DUX4 binds and activates transcription of mammalian apparent LTR-retrotransposons (MaLRs), endogenous retrovirus (ERVL and ERVK) elements, and pericentromeric satellite HSATII sequences. Some DUX4-activated MaLR and ERV elements create novel promoters for genes, long non-coding RNAs, and antisense transcripts. Many of these novel transcripts are expressed in FSHD muscle cells but not control cells, and thus might contribute to FSHD pathology. For example, HEY1, a repressor of myogenesis, is activated by DUX4 through a MaLR promoter. DUX4-bound motifs, including those in repetitive elements, show evolutionary conservation and some repeat-initiated transcripts are expressed in healthy testis, the normal expression site of DUX4, but more rarely in other somatic tissues. Testis expression patterns are known to have evolved rapidly in mammals, but the mechanisms behind this rapid change have not yet been identified: our results suggest that mobilization of MaLR and ERV elements during mammalian evolution altered germline gene expression patterns through transcriptional activation by DUX4. Our findings demonstrate a role for DUX4 and repetitive elements in mammalian germline evolution and in FSHD muscular dystrophy.</description><subject>Animals</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Binding sites</subject><subject>Binding sites (Biochemistry)</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>Cell Line</subject><subject>Epigenetic inheritance</subject><subject>Epigenetics</subject><subject>Estimates</subject><subject>Experiments</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germ Cells - metabolism</subject><subject>Homeodomain Proteins - genetics</subject><subject>Homeodomain Proteins - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Mammals</subject><subject>Muscle Development - genetics</subject><subject>Muscle Fibers, Skeletal - metabolism</subject><subject>Muscle Fibers, Skeletal - pathology</subject><subject>Muscular dystrophy</subject><subject>Muscular Dystrophy, Facioscapulohumeral - genetics</subject><subject>Muscular Dystrophy, Facioscapulohumeral - metabolism</subject><subject>Muscular Dystrophy, Facioscapulohumeral - pathology</subject><subject>Musculoskeletal system</subject><subject>Myoblasts - metabolism</subject><subject>Physiological aspects</subject><subject>Promoter Regions, Genetic</subject><subject>Promoters (Genetics)</subject><subject>Protein Binding</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>Retroelements - genetics</subject><subject>Testis - growth & development</subject><subject>Testis - metabolism</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11rFDEUhgdRbK3-A9GAIHqx6-RrMnNTKK21C8WCtaJXIZM5M5tlJlmTTNF_b7a7LTvghZKLhJPnfXM4JyfLXuJ8jqnAH1Zu9Fb183UHdo7znFZMPMoOMed0JljOHu-dD7JnIawSw8tKPM0OCCOizCk-zH6c3XxnqDa2MbZD0SEP0TvoYQAbA9IeVISA1t4NLoIPKC5VRMoDUjqaW0DGovPrizM0jEH3KWoblATRhOfZk1b1AV7s9qPs5vzj19OL2eXVp8XpyeVMF1UZZxygaUlZEE0KobVSoqlxTZmqiyavGbTAilwwVQleV9AoLdqi1ZwQ0la4qQk9yl5vfde9C3JXlSAxK0pe4SpniVhsicaplVx7Myj_Wzpl5F3A-U4qH01KXzJdK1ZxRVRZMdBlWTeYckIJ00Q0uExex7vXxnqARqcqedVPTKc31ixl524lLWkh8ioZvNsZePdzTJWSgwka-l5ZcONd3gSXQhQb9M0W7VRKzdjWJUe9weUJ5RTnnHGaqPlfqLQaGIx2FlqT4hPB-4kgMRF-xU6NIcjF9Zf_YD__O3v1bcq-3WOXoPq4DK4fo3E2TEG2BbV3IXhoH0qNc7mZg_uOy80cyN0cJNmr_TY9iO4_Pv0Drr8ChQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Young, Janet M</creator><creator>Whiddon, Jennifer L</creator><creator>Yao, Zizhen</creator><creator>Kasinathan, Bhavatharini</creator><creator>Snider, Lauren</creator><creator>Geng, Linda N</creator><creator>Balog, Judit</creator><creator>Tawil, Rabi</creator><creator>van der Maarel, Silvère M</creator><creator>Tapscott, Stephen J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131101</creationdate><title>DUX4 binding to retroelements creates promoters that are active in FSHD muscle and testis</title><author>Young, Janet M ; Whiddon, Jennifer L ; Yao, Zizhen ; Kasinathan, Bhavatharini ; Snider, Lauren ; Geng, Linda N ; Balog, Judit ; Tawil, Rabi ; van der Maarel, Silvère M ; Tapscott, Stephen J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c698t-5eedf2862c267ccaa7db1b34ab6d0b4efe46074a975b9edac7f6fc5222f91db23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Binding sites</topic><topic>Binding sites (Biochemistry)</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>Cell Line</topic><topic>Epigenetic inheritance</topic><topic>Epigenetics</topic><topic>Estimates</topic><topic>Experiments</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germ Cells - metabolism</topic><topic>Homeodomain Proteins - genetics</topic><topic>Homeodomain Proteins - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Mammals</topic><topic>Muscle Development - genetics</topic><topic>Muscle Fibers, Skeletal - metabolism</topic><topic>Muscle Fibers, Skeletal - pathology</topic><topic>Muscular dystrophy</topic><topic>Muscular Dystrophy, Facioscapulohumeral - genetics</topic><topic>Muscular Dystrophy, Facioscapulohumeral - metabolism</topic><topic>Muscular Dystrophy, Facioscapulohumeral - pathology</topic><topic>Musculoskeletal system</topic><topic>Myoblasts - metabolism</topic><topic>Physiological aspects</topic><topic>Promoter Regions, Genetic</topic><topic>Promoters (Genetics)</topic><topic>Protein Binding</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>Retroelements - genetics</topic><topic>Testis - growth & development</topic><topic>Testis - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Janet M</creatorcontrib><creatorcontrib>Whiddon, Jennifer L</creatorcontrib><creatorcontrib>Yao, Zizhen</creatorcontrib><creatorcontrib>Kasinathan, Bhavatharini</creatorcontrib><creatorcontrib>Snider, Lauren</creatorcontrib><creatorcontrib>Geng, Linda N</creatorcontrib><creatorcontrib>Balog, Judit</creatorcontrib><creatorcontrib>Tawil, Rabi</creatorcontrib><creatorcontrib>van der Maarel, Silvère M</creatorcontrib><creatorcontrib>Tapscott, Stephen J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Janet M</au><au>Whiddon, Jennifer L</au><au>Yao, Zizhen</au><au>Kasinathan, Bhavatharini</au><au>Snider, Lauren</au><au>Geng, Linda N</au><au>Balog, Judit</au><au>Tawil, Rabi</au><au>van der Maarel, Silvère M</au><au>Tapscott, Stephen J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DUX4 binding to retroelements creates promoters that are active in FSHD muscle and testis</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>9</volume><issue>11</issue><spage>e1003947</spage><epage>e1003947</epage><pages>e1003947-e1003947</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>The human double-homeodomain retrogene DUX4 is expressed in the testis and epigenetically repressed in somatic tissues. Facioscapulohumeral muscular dystrophy (FSHD) is caused by mutations that decrease the epigenetic repression of DUX4 in somatic tissues and result in mis-expression of this transcription factor in skeletal muscle. DUX4 binds sites in the human genome that contain a double-homeobox sequence motif, including sites in unique regions of the genome as well as many sites in repetitive elements. Using ChIP-seq and RNA-seq on myoblasts transduced with DUX4 we show that DUX4 binds and activates transcription of mammalian apparent LTR-retrotransposons (MaLRs), endogenous retrovirus (ERVL and ERVK) elements, and pericentromeric satellite HSATII sequences. Some DUX4-activated MaLR and ERV elements create novel promoters for genes, long non-coding RNAs, and antisense transcripts. Many of these novel transcripts are expressed in FSHD muscle cells but not control cells, and thus might contribute to FSHD pathology. For example, HEY1, a repressor of myogenesis, is activated by DUX4 through a MaLR promoter. DUX4-bound motifs, including those in repetitive elements, show evolutionary conservation and some repeat-initiated transcripts are expressed in healthy testis, the normal expression site of DUX4, but more rarely in other somatic tissues. Testis expression patterns are known to have evolved rapidly in mammals, but the mechanisms behind this rapid change have not yet been identified: our results suggest that mobilization of MaLR and ERV elements during mammalian evolution altered germline gene expression patterns through transcriptional activation by DUX4. Our findings demonstrate a role for DUX4 and repetitive elements in mammalian germline evolution and in FSHD muscular dystrophy.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24278031</pmid><doi>10.1371/journal.pgen.1003947</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2013-11, Vol.9 (11), p.e1003947-e1003947 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1468591904 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Animals Basic Helix-Loop-Helix Transcription Factors - genetics Basic Helix-Loop-Helix Transcription Factors - metabolism Binding sites Binding sites (Biochemistry) Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism Cell Line Epigenetic inheritance Epigenetics Estimates Experiments Gene expression Gene Expression Regulation, Developmental Genetic aspects Genomes Genomics Germ Cells - metabolism Homeodomain Proteins - genetics Homeodomain Proteins - metabolism Humans Male Mammals Muscle Development - genetics Muscle Fibers, Skeletal - metabolism Muscle Fibers, Skeletal - pathology Muscular dystrophy Muscular Dystrophy, Facioscapulohumeral - genetics Muscular Dystrophy, Facioscapulohumeral - metabolism Muscular Dystrophy, Facioscapulohumeral - pathology Musculoskeletal system Myoblasts - metabolism Physiological aspects Promoter Regions, Genetic Promoters (Genetics) Protein Binding Repetitive Sequences, Nucleic Acid Retroelements - genetics Testis - growth & development Testis - metabolism |
title | DUX4 binding to retroelements creates promoters that are active in FSHD muscle and testis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T21%3A44%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DUX4%20binding%20to%20retroelements%20creates%20promoters%20that%20are%20active%20in%20FSHD%20muscle%20and%20testis&rft.jtitle=PLoS%20genetics&rft.au=Young,%20Janet%20M&rft.date=2013-11-01&rft.volume=9&rft.issue=11&rft.spage=e1003947&rft.epage=e1003947&rft.pages=e1003947-e1003947&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003947&rft_dat=%3Cgale_plos_%3EA353105453%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462187769&rft_id=info:pmid/24278031&rft_galeid=A353105453&rft_doaj_id=oai_doaj_org_article_4cba495a2a894ec88bd1352324c27d18&rfr_iscdi=true |