Fission Yeast Shelterin Regulates DNA Polymerases and Rad3ATR Kinase to Limit Telomere Extension

Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3 ATR /Tel1 ATM -dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2013-11, Vol.9 (11), p.e1003936
Hauptverfasser: Chang, Ya-Ting, Moser, Bettina A., Nakamura, Toru M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e1003936
container_title PLoS genetics
container_volume 9
creator Chang, Ya-Ting
Moser, Bettina A.
Nakamura, Toru M.
description Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3 ATR /Tel1 ATM -dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1 TERT ), DNA polymerases, Replication Protein A (RPA) complex, Rad3 ATR -Rad26 ATRIP checkpoint kinase complex, Tel1 ATM kinase, shelterin subunits (Tpz1, Ccq1 and Poz1) and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε) and lagging (Polα) strand DNA polymerases at telomeres to modulate Rad3 ATR association, Ccq1 Thr93 phosphorylation and telomerase recruitment. Stable maintenance of telomeres is critical to maintain a stable genome and to prevent accumulation of undesired mutations that may lead to formation of tumors. Telomere dysfunction can also lead to premature aging due to depletion of the stem cell population, highlighting the importance of understanding the regulatory mechanisms that ensure stable telomere maintenance. Based on careful analysis of cell cycle-regulated changes in telomere association of telomerase, DNA polymerases, Replication Protein A, checkpoint kinases, telomere protection complex shelterin, and Stn1-Ten1 complex, we will provide here a new and dynamic model of telomere length regulation in fission yeast, which suggests that shelterin-dependent regulation of differential arrival of leading and lagging strand DNA polymerase at telomeres is responsible for modulating Rad3 ATR checkpoint kinase accumulation and Rad3 ATR -dependent phosphorylation of shelterin subunit Ccq1 to control telomerase recruitment to telomeres.
doi_str_mv 10.1371/journal.pgen.1003936
format Article
fullrecord <record><control><sourceid>plos_pubme</sourceid><recordid>TN_cdi_plos_journals_1468591821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1468591821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2876-2f352d8bf46ed28caeeac5f8ea22a29f0e3da7b6b12ce3950031e52fa540bfd53</originalsourceid><addsrcrecordid>eNpVkdtOwzAMhiMEYmPwBkjkBTqaUw83SNPYADEBGuOCq5C2zpapTaamQ-zt6bSC4CqO_fm37B-hSxIOCYvJ9dpta6vK4WYJdkjCkKUsOkJ9IgQLYh7y4z9xD515v24ZkaTxKepRTjknqeijj6nx3jiL30H5Br-uoGygNhbPYbktVQMe3z6N8IsrdxXUyrd_ZQs8VwUbLeb40dg2hxuHZ6YyDV5A6VoO8OSrAbsXPkcnWpUeLrp3gN6mk8X4Ppg93z2MR7Mgp0kcBVQzQYsk0zyCgia5AlC50AkoShVNdQisUHEWZYTmwFLR7kJAUK0EDzNdCDZAVwfdTem87I7jJeFRIlKSUNISNx2xzSoocrBNrUq5qU2l6p10ysj_FWtWcuk-JUtoGKdRK8APAnntvK9B__aSUO49-Rkr957IzhP2DaTvgwY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fission Yeast Shelterin Regulates DNA Polymerases and Rad3ATR Kinase to Limit Telomere Extension</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Chang, Ya-Ting ; Moser, Bettina A. ; Nakamura, Toru M.</creator><creatorcontrib>Chang, Ya-Ting ; Moser, Bettina A. ; Nakamura, Toru M.</creatorcontrib><description>Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3 ATR /Tel1 ATM -dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1 TERT ), DNA polymerases, Replication Protein A (RPA) complex, Rad3 ATR -Rad26 ATRIP checkpoint kinase complex, Tel1 ATM kinase, shelterin subunits (Tpz1, Ccq1 and Poz1) and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε) and lagging (Polα) strand DNA polymerases at telomeres to modulate Rad3 ATR association, Ccq1 Thr93 phosphorylation and telomerase recruitment. Stable maintenance of telomeres is critical to maintain a stable genome and to prevent accumulation of undesired mutations that may lead to formation of tumors. Telomere dysfunction can also lead to premature aging due to depletion of the stem cell population, highlighting the importance of understanding the regulatory mechanisms that ensure stable telomere maintenance. Based on careful analysis of cell cycle-regulated changes in telomere association of telomerase, DNA polymerases, Replication Protein A, checkpoint kinases, telomere protection complex shelterin, and Stn1-Ten1 complex, we will provide here a new and dynamic model of telomere length regulation in fission yeast, which suggests that shelterin-dependent regulation of differential arrival of leading and lagging strand DNA polymerase at telomeres is responsible for modulating Rad3 ATR checkpoint kinase accumulation and Rad3 ATR -dependent phosphorylation of shelterin subunit Ccq1 to control telomerase recruitment to telomeres.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003936</identifier><identifier>PMID: 24244195</identifier><language>eng</language><publisher>San Francisco, USA: Public Library of Science</publisher><subject>Cell cycle ; Chromosomes ; Deoxyribonucleic acid ; DNA ; Experiments ; Genomes ; Kinases ; Mutation ; Phosphorylation ; Plasmids ; Proteins ; Recruitment ; Regulation ; Stem cells ; Telomerase ; Yeast</subject><ispartof>PLoS genetics, 2013-11, Vol.9 (11), p.e1003936</ispartof><rights>2013 Chang et al 2013 Chang et al</rights><rights>2013 Chang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Chang Y-T, Moser BA, Nakamura TM (2013) Fission Yeast Shelterin Regulates DNA Polymerases and Rad3ATR Kinase to Limit Telomere Extension. PLoS Genet 9(11): e1003936. doi:10.1371/journal.pgen.1003936</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2876-2f352d8bf46ed28caeeac5f8ea22a29f0e3da7b6b12ce3950031e52fa540bfd53</citedby><cites>FETCH-LOGICAL-c2876-2f352d8bf46ed28caeeac5f8ea22a29f0e3da7b6b12ce3950031e52fa540bfd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820796/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820796/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids></links><search><creatorcontrib>Chang, Ya-Ting</creatorcontrib><creatorcontrib>Moser, Bettina A.</creatorcontrib><creatorcontrib>Nakamura, Toru M.</creatorcontrib><title>Fission Yeast Shelterin Regulates DNA Polymerases and Rad3ATR Kinase to Limit Telomere Extension</title><title>PLoS genetics</title><description>Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3 ATR /Tel1 ATM -dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1 TERT ), DNA polymerases, Replication Protein A (RPA) complex, Rad3 ATR -Rad26 ATRIP checkpoint kinase complex, Tel1 ATM kinase, shelterin subunits (Tpz1, Ccq1 and Poz1) and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε) and lagging (Polα) strand DNA polymerases at telomeres to modulate Rad3 ATR association, Ccq1 Thr93 phosphorylation and telomerase recruitment. Stable maintenance of telomeres is critical to maintain a stable genome and to prevent accumulation of undesired mutations that may lead to formation of tumors. Telomere dysfunction can also lead to premature aging due to depletion of the stem cell population, highlighting the importance of understanding the regulatory mechanisms that ensure stable telomere maintenance. Based on careful analysis of cell cycle-regulated changes in telomere association of telomerase, DNA polymerases, Replication Protein A, checkpoint kinases, telomere protection complex shelterin, and Stn1-Ten1 complex, we will provide here a new and dynamic model of telomere length regulation in fission yeast, which suggests that shelterin-dependent regulation of differential arrival of leading and lagging strand DNA polymerase at telomeres is responsible for modulating Rad3 ATR checkpoint kinase accumulation and Rad3 ATR -dependent phosphorylation of shelterin subunit Ccq1 to control telomerase recruitment to telomeres.</description><subject>Cell cycle</subject><subject>Chromosomes</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Experiments</subject><subject>Genomes</subject><subject>Kinases</subject><subject>Mutation</subject><subject>Phosphorylation</subject><subject>Plasmids</subject><subject>Proteins</subject><subject>Recruitment</subject><subject>Regulation</subject><subject>Stem cells</subject><subject>Telomerase</subject><subject>Yeast</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpVkdtOwzAMhiMEYmPwBkjkBTqaUw83SNPYADEBGuOCq5C2zpapTaamQ-zt6bSC4CqO_fm37B-hSxIOCYvJ9dpta6vK4WYJdkjCkKUsOkJ9IgQLYh7y4z9xD515v24ZkaTxKepRTjknqeijj6nx3jiL30H5Br-uoGygNhbPYbktVQMe3z6N8IsrdxXUyrd_ZQs8VwUbLeb40dg2hxuHZ6YyDV5A6VoO8OSrAbsXPkcnWpUeLrp3gN6mk8X4Ppg93z2MR7Mgp0kcBVQzQYsk0zyCgia5AlC50AkoShVNdQisUHEWZYTmwFLR7kJAUK0EDzNdCDZAVwfdTem87I7jJeFRIlKSUNISNx2xzSoocrBNrUq5qU2l6p10ysj_FWtWcuk-JUtoGKdRK8APAnntvK9B__aSUO49-Rkr957IzhP2DaTvgwY</recordid><startdate>20131107</startdate><enddate>20131107</enddate><creator>Chang, Ya-Ting</creator><creator>Moser, Bettina A.</creator><creator>Nakamura, Toru M.</creator><general>Public Library of Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20131107</creationdate><title>Fission Yeast Shelterin Regulates DNA Polymerases and Rad3ATR Kinase to Limit Telomere Extension</title><author>Chang, Ya-Ting ; Moser, Bettina A. ; Nakamura, Toru M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2876-2f352d8bf46ed28caeeac5f8ea22a29f0e3da7b6b12ce3950031e52fa540bfd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Cell cycle</topic><topic>Chromosomes</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Experiments</topic><topic>Genomes</topic><topic>Kinases</topic><topic>Mutation</topic><topic>Phosphorylation</topic><topic>Plasmids</topic><topic>Proteins</topic><topic>Recruitment</topic><topic>Regulation</topic><topic>Stem cells</topic><topic>Telomerase</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Ya-Ting</creatorcontrib><creatorcontrib>Moser, Bettina A.</creatorcontrib><creatorcontrib>Nakamura, Toru M.</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Ya-Ting</au><au>Moser, Bettina A.</au><au>Nakamura, Toru M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fission Yeast Shelterin Regulates DNA Polymerases and Rad3ATR Kinase to Limit Telomere Extension</atitle><jtitle>PLoS genetics</jtitle><date>2013-11-07</date><risdate>2013</risdate><volume>9</volume><issue>11</issue><spage>e1003936</spage><pages>e1003936-</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Studies in fission yeast have previously identified evolutionarily conserved shelterin and Stn1-Ten1 complexes, and established Rad3 ATR /Tel1 ATM -dependent phosphorylation of the shelterin subunit Ccq1 at Thr93 as the critical post-translational modification for telomerase recruitment to telomeres. Furthermore, shelterin subunits Poz1, Rap1 and Taz1 have been identified as negative regulators of Thr93 phosphorylation and telomerase recruitment. However, it remained unclear how telomere maintenance is dynamically regulated during the cell cycle. Thus, we investigated how loss of Poz1, Rap1 and Taz1 affects cell cycle regulation of Ccq1 Thr93 phosphorylation and telomere association of telomerase (Trt1 TERT ), DNA polymerases, Replication Protein A (RPA) complex, Rad3 ATR -Rad26 ATRIP checkpoint kinase complex, Tel1 ATM kinase, shelterin subunits (Tpz1, Ccq1 and Poz1) and Stn1. We further investigated how telomere shortening, caused by trt1Δ or catalytically dead Trt1-D743A, affects cell cycle-regulated telomere association of telomerase and DNA polymerases. These analyses established that fission yeast shelterin maintains telomere length homeostasis by coordinating the differential arrival of leading (Polε) and lagging (Polα) strand DNA polymerases at telomeres to modulate Rad3 ATR association, Ccq1 Thr93 phosphorylation and telomerase recruitment. Stable maintenance of telomeres is critical to maintain a stable genome and to prevent accumulation of undesired mutations that may lead to formation of tumors. Telomere dysfunction can also lead to premature aging due to depletion of the stem cell population, highlighting the importance of understanding the regulatory mechanisms that ensure stable telomere maintenance. Based on careful analysis of cell cycle-regulated changes in telomere association of telomerase, DNA polymerases, Replication Protein A, checkpoint kinases, telomere protection complex shelterin, and Stn1-Ten1 complex, we will provide here a new and dynamic model of telomere length regulation in fission yeast, which suggests that shelterin-dependent regulation of differential arrival of leading and lagging strand DNA polymerase at telomeres is responsible for modulating Rad3 ATR checkpoint kinase accumulation and Rad3 ATR -dependent phosphorylation of shelterin subunit Ccq1 to control telomerase recruitment to telomeres.</abstract><cop>San Francisco, USA</cop><pub>Public Library of Science</pub><pmid>24244195</pmid><doi>10.1371/journal.pgen.1003936</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2013-11, Vol.9 (11), p.e1003936
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1468591821
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Cell cycle
Chromosomes
Deoxyribonucleic acid
DNA
Experiments
Genomes
Kinases
Mutation
Phosphorylation
Plasmids
Proteins
Recruitment
Regulation
Stem cells
Telomerase
Yeast
title Fission Yeast Shelterin Regulates DNA Polymerases and Rad3ATR Kinase to Limit Telomere Extension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A16%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-plos_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fission%20Yeast%20Shelterin%20Regulates%20DNA%20Polymerases%20and%20Rad3ATR%20Kinase%20to%20Limit%20Telomere%20Extension&rft.jtitle=PLoS%20genetics&rft.au=Chang,%20Ya-Ting&rft.date=2013-11-07&rft.volume=9&rft.issue=11&rft.spage=e1003936&rft.pages=e1003936-&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003936&rft_dat=%3Cplos_pubme%3E1468591821%3C/plos_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24244195&rfr_iscdi=true