Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals
Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2013-11, Vol.9 (11), p.e1003372-e1003372 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003372 |
---|---|
container_issue | 11 |
container_start_page | e1003372 |
container_title | PLoS computational biology |
container_volume | 9 |
creator | Heldt, Frank S Frensing, Timo Pflugmacher, Antje Gröpler, Robin Peschel, Britta Reichl, Udo |
description | Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases. |
doi_str_mv | 10.1371/journal.pcbi.1003372 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1468589788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A353212176</galeid><doaj_id>oai_doaj_org_article_29fe963391aa4d9fa6843b7428479de7</doaj_id><sourcerecordid>A353212176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-169f80c0b0fb87a160177c13fe8d7f12987b5520a027e64e4be6df0b2e99f5d53</originalsourceid><addsrcrecordid>eNqVkkuP0zAUhSMEYobCP0AQiQ0sWvxI_NggVSMelQaQeKwtJ7nOuErijJ1UwK_ndtoZTSU2yAtbN985se-5WfackhXlkr7dhjkOtluNdeVXlBDOJXuQndOy5EvJS_Xw3vkse5LSFplSafE4O2MFk4oQfZ61n-du8qm2HeR9aKDzQ5sHl_vBdTMMf2y-znc-zmlfgXryYcjTPI4hTimfriBvYAddGHsYpr2u8RGppUUSjewweVTbLj3NHjnc4NlxX2Q_P7z_cfFpefn14-ZifbmsBefTkgrtFKlJRVylpKWCUClryh2oRjrKtJJVWTJiCZMgCigqEI0jFQOtXdmUfJG9PPiOXUjm2KNkaCEUvl0qhcTmQDTBbs0YfW_jbxOsNzeFEFtj4-TrDgzTDjTeS1Nri0Y7K1TBK1kwVUjdgESvd8e_zVUPTY1NwMeemJ5-GfyVacPOcMWFxDwW2eujQQzXM6TJ9BgGdJ0dIMw392ZUlaJkiL46oC1mZTCNgI71HjdrXnJGGZUCqdU_KFwN9L4OAziP9RPBmxMBMhP8mlo7p2Q237_9B_vllC0ObB1DShHcXVcoMfsBvg3H7AfYHAcYZS_ud_ROdDux_C_eQO06</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462185652</pqid></control><display><type>article</type><title>Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Heldt, Frank S ; Frensing, Timo ; Pflugmacher, Antje ; Gröpler, Robin ; Peschel, Britta ; Reichl, Udo</creator><contributor>Koelle, Katia</contributor><creatorcontrib>Heldt, Frank S ; Frensing, Timo ; Pflugmacher, Antje ; Gröpler, Robin ; Peschel, Britta ; Reichl, Udo ; Koelle, Katia</creatorcontrib><description>Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003372</identifier><identifier>PMID: 24278009</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antiviral agents ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Avian influenza ; Cell Death ; Computational Biology ; Dogs ; Dosage and administration ; Drug Discovery - methods ; Drug resistance ; Extracellular Space - virology ; Genomes ; Host-parasite relationships ; Humans ; Influenza ; Influenza A virus - drug effects ; Influenza A virus - physiology ; Influenza, Human - virology ; Intracellular Space - virology ; Licenses ; Madin Darby Canine Kidney Cells ; Microbiology ; Models, Biological ; Physiological aspects ; Prevention ; Proteins ; Virus Internalization - drug effects ; Virus Replication - drug effects ; Viruses</subject><ispartof>PLoS computational biology, 2013-11, Vol.9 (11), p.e1003372-e1003372</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Heldt et al 2013 Heldt et al</rights><rights>2013 Heldt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Heldt FS, Frensing T, Pflugmacher A, Gröpler R, Peschel B, et al. (2013) Multiscale Modeling of Influenza A Virus Infection Supports the Development of Direct-Acting Antivirals. PLoS Comput Biol 9(11): e1003372. doi:10.1371/journal.pcbi.1003372</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-169f80c0b0fb87a160177c13fe8d7f12987b5520a027e64e4be6df0b2e99f5d53</citedby><cites>FETCH-LOGICAL-c633t-169f80c0b0fb87a160177c13fe8d7f12987b5520a027e64e4be6df0b2e99f5d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836700/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836700/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24278009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Koelle, Katia</contributor><creatorcontrib>Heldt, Frank S</creatorcontrib><creatorcontrib>Frensing, Timo</creatorcontrib><creatorcontrib>Pflugmacher, Antje</creatorcontrib><creatorcontrib>Gröpler, Robin</creatorcontrib><creatorcontrib>Peschel, Britta</creatorcontrib><creatorcontrib>Reichl, Udo</creatorcontrib><title>Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases.</description><subject>Animals</subject><subject>Antiviral agents</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Avian influenza</subject><subject>Cell Death</subject><subject>Computational Biology</subject><subject>Dogs</subject><subject>Dosage and administration</subject><subject>Drug Discovery - methods</subject><subject>Drug resistance</subject><subject>Extracellular Space - virology</subject><subject>Genomes</subject><subject>Host-parasite relationships</subject><subject>Humans</subject><subject>Influenza</subject><subject>Influenza A virus - drug effects</subject><subject>Influenza A virus - physiology</subject><subject>Influenza, Human - virology</subject><subject>Intracellular Space - virology</subject><subject>Licenses</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Microbiology</subject><subject>Models, Biological</subject><subject>Physiological aspects</subject><subject>Prevention</subject><subject>Proteins</subject><subject>Virus Internalization - drug effects</subject><subject>Virus Replication - drug effects</subject><subject>Viruses</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAUhSMEYobCP0AQiQ0sWvxI_NggVSMelQaQeKwtJ7nOuErijJ1UwK_ndtoZTSU2yAtbN985se-5WfackhXlkr7dhjkOtluNdeVXlBDOJXuQndOy5EvJS_Xw3vkse5LSFplSafE4O2MFk4oQfZ61n-du8qm2HeR9aKDzQ5sHl_vBdTMMf2y-znc-zmlfgXryYcjTPI4hTimfriBvYAddGHsYpr2u8RGppUUSjewweVTbLj3NHjnc4NlxX2Q_P7z_cfFpefn14-ZifbmsBefTkgrtFKlJRVylpKWCUClryh2oRjrKtJJVWTJiCZMgCigqEI0jFQOtXdmUfJG9PPiOXUjm2KNkaCEUvl0qhcTmQDTBbs0YfW_jbxOsNzeFEFtj4-TrDgzTDjTeS1Nri0Y7K1TBK1kwVUjdgESvd8e_zVUPTY1NwMeemJ5-GfyVacPOcMWFxDwW2eujQQzXM6TJ9BgGdJ0dIMw392ZUlaJkiL46oC1mZTCNgI71HjdrXnJGGZUCqdU_KFwN9L4OAziP9RPBmxMBMhP8mlo7p2Q237_9B_vllC0ObB1DShHcXVcoMfsBvg3H7AfYHAcYZS_ud_ROdDux_C_eQO06</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Heldt, Frank S</creator><creator>Frensing, Timo</creator><creator>Pflugmacher, Antje</creator><creator>Gröpler, Robin</creator><creator>Peschel, Britta</creator><creator>Reichl, Udo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131101</creationdate><title>Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals</title><author>Heldt, Frank S ; Frensing, Timo ; Pflugmacher, Antje ; Gröpler, Robin ; Peschel, Britta ; Reichl, Udo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-169f80c0b0fb87a160177c13fe8d7f12987b5520a027e64e4be6df0b2e99f5d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Antiviral agents</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Avian influenza</topic><topic>Cell Death</topic><topic>Computational Biology</topic><topic>Dogs</topic><topic>Dosage and administration</topic><topic>Drug Discovery - methods</topic><topic>Drug resistance</topic><topic>Extracellular Space - virology</topic><topic>Genomes</topic><topic>Host-parasite relationships</topic><topic>Humans</topic><topic>Influenza</topic><topic>Influenza A virus - drug effects</topic><topic>Influenza A virus - physiology</topic><topic>Influenza, Human - virology</topic><topic>Intracellular Space - virology</topic><topic>Licenses</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Microbiology</topic><topic>Models, Biological</topic><topic>Physiological aspects</topic><topic>Prevention</topic><topic>Proteins</topic><topic>Virus Internalization - drug effects</topic><topic>Virus Replication - drug effects</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heldt, Frank S</creatorcontrib><creatorcontrib>Frensing, Timo</creatorcontrib><creatorcontrib>Pflugmacher, Antje</creatorcontrib><creatorcontrib>Gröpler, Robin</creatorcontrib><creatorcontrib>Peschel, Britta</creatorcontrib><creatorcontrib>Reichl, Udo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heldt, Frank S</au><au>Frensing, Timo</au><au>Pflugmacher, Antje</au><au>Gröpler, Robin</au><au>Peschel, Britta</au><au>Reichl, Udo</au><au>Koelle, Katia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>9</volume><issue>11</issue><spage>e1003372</spage><epage>e1003372</epage><pages>e1003372-e1003372</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24278009</pmid><doi>10.1371/journal.pcbi.1003372</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2013-11, Vol.9 (11), p.e1003372-e1003372 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1468589788 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Animals Antiviral agents Antiviral Agents - chemistry Antiviral Agents - pharmacology Avian influenza Cell Death Computational Biology Dogs Dosage and administration Drug Discovery - methods Drug resistance Extracellular Space - virology Genomes Host-parasite relationships Humans Influenza Influenza A virus - drug effects Influenza A virus - physiology Influenza, Human - virology Intracellular Space - virology Licenses Madin Darby Canine Kidney Cells Microbiology Models, Biological Physiological aspects Prevention Proteins Virus Internalization - drug effects Virus Replication - drug effects Viruses |
title | Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20modeling%20of%20influenza%20A%20virus%20infection%20supports%20the%20development%20of%20direct-acting%20antivirals&rft.jtitle=PLoS%20computational%20biology&rft.au=Heldt,%20Frank%20S&rft.date=2013-11-01&rft.volume=9&rft.issue=11&rft.spage=e1003372&rft.epage=e1003372&rft.pages=e1003372-e1003372&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003372&rft_dat=%3Cgale_plos_%3EA353212176%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462185652&rft_id=info:pmid/24278009&rft_galeid=A353212176&rft_doaj_id=oai_doaj_org_article_29fe963391aa4d9fa6843b7428479de7&rfr_iscdi=true |