Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals

Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2013-11, Vol.9 (11), p.e1003372-e1003372
Hauptverfasser: Heldt, Frank S, Frensing, Timo, Pflugmacher, Antje, Gröpler, Robin, Peschel, Britta, Reichl, Udo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003372
container_issue 11
container_start_page e1003372
container_title PLoS computational biology
container_volume 9
creator Heldt, Frank S
Frensing, Timo
Pflugmacher, Antje
Gröpler, Robin
Peschel, Britta
Reichl, Udo
description Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases.
doi_str_mv 10.1371/journal.pcbi.1003372
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1468589788</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A353212176</galeid><doaj_id>oai_doaj_org_article_29fe963391aa4d9fa6843b7428479de7</doaj_id><sourcerecordid>A353212176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-169f80c0b0fb87a160177c13fe8d7f12987b5520a027e64e4be6df0b2e99f5d53</originalsourceid><addsrcrecordid>eNqVkkuP0zAUhSMEYobCP0AQiQ0sWvxI_NggVSMelQaQeKwtJ7nOuErijJ1UwK_ndtoZTSU2yAtbN985se-5WfackhXlkr7dhjkOtluNdeVXlBDOJXuQndOy5EvJS_Xw3vkse5LSFplSafE4O2MFk4oQfZ61n-du8qm2HeR9aKDzQ5sHl_vBdTMMf2y-znc-zmlfgXryYcjTPI4hTimfriBvYAddGHsYpr2u8RGppUUSjewweVTbLj3NHjnc4NlxX2Q_P7z_cfFpefn14-ZifbmsBefTkgrtFKlJRVylpKWCUClryh2oRjrKtJJVWTJiCZMgCigqEI0jFQOtXdmUfJG9PPiOXUjm2KNkaCEUvl0qhcTmQDTBbs0YfW_jbxOsNzeFEFtj4-TrDgzTDjTeS1Nri0Y7K1TBK1kwVUjdgESvd8e_zVUPTY1NwMeemJ5-GfyVacPOcMWFxDwW2eujQQzXM6TJ9BgGdJ0dIMw392ZUlaJkiL46oC1mZTCNgI71HjdrXnJGGZUCqdU_KFwN9L4OAziP9RPBmxMBMhP8mlo7p2Q237_9B_vllC0ObB1DShHcXVcoMfsBvg3H7AfYHAcYZS_ud_ROdDux_C_eQO06</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462185652</pqid></control><display><type>article</type><title>Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Heldt, Frank S ; Frensing, Timo ; Pflugmacher, Antje ; Gröpler, Robin ; Peschel, Britta ; Reichl, Udo</creator><contributor>Koelle, Katia</contributor><creatorcontrib>Heldt, Frank S ; Frensing, Timo ; Pflugmacher, Antje ; Gröpler, Robin ; Peschel, Britta ; Reichl, Udo ; Koelle, Katia</creatorcontrib><description>Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003372</identifier><identifier>PMID: 24278009</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antiviral agents ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Avian influenza ; Cell Death ; Computational Biology ; Dogs ; Dosage and administration ; Drug Discovery - methods ; Drug resistance ; Extracellular Space - virology ; Genomes ; Host-parasite relationships ; Humans ; Influenza ; Influenza A virus - drug effects ; Influenza A virus - physiology ; Influenza, Human - virology ; Intracellular Space - virology ; Licenses ; Madin Darby Canine Kidney Cells ; Microbiology ; Models, Biological ; Physiological aspects ; Prevention ; Proteins ; Virus Internalization - drug effects ; Virus Replication - drug effects ; Viruses</subject><ispartof>PLoS computational biology, 2013-11, Vol.9 (11), p.e1003372-e1003372</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Heldt et al 2013 Heldt et al</rights><rights>2013 Heldt et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Heldt FS, Frensing T, Pflugmacher A, Gröpler R, Peschel B, et al. (2013) Multiscale Modeling of Influenza A Virus Infection Supports the Development of Direct-Acting Antivirals. PLoS Comput Biol 9(11): e1003372. doi:10.1371/journal.pcbi.1003372</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-169f80c0b0fb87a160177c13fe8d7f12987b5520a027e64e4be6df0b2e99f5d53</citedby><cites>FETCH-LOGICAL-c633t-169f80c0b0fb87a160177c13fe8d7f12987b5520a027e64e4be6df0b2e99f5d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836700/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836700/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24278009$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Koelle, Katia</contributor><creatorcontrib>Heldt, Frank S</creatorcontrib><creatorcontrib>Frensing, Timo</creatorcontrib><creatorcontrib>Pflugmacher, Antje</creatorcontrib><creatorcontrib>Gröpler, Robin</creatorcontrib><creatorcontrib>Peschel, Britta</creatorcontrib><creatorcontrib>Reichl, Udo</creatorcontrib><title>Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases.</description><subject>Animals</subject><subject>Antiviral agents</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Avian influenza</subject><subject>Cell Death</subject><subject>Computational Biology</subject><subject>Dogs</subject><subject>Dosage and administration</subject><subject>Drug Discovery - methods</subject><subject>Drug resistance</subject><subject>Extracellular Space - virology</subject><subject>Genomes</subject><subject>Host-parasite relationships</subject><subject>Humans</subject><subject>Influenza</subject><subject>Influenza A virus - drug effects</subject><subject>Influenza A virus - physiology</subject><subject>Influenza, Human - virology</subject><subject>Intracellular Space - virology</subject><subject>Licenses</subject><subject>Madin Darby Canine Kidney Cells</subject><subject>Microbiology</subject><subject>Models, Biological</subject><subject>Physiological aspects</subject><subject>Prevention</subject><subject>Proteins</subject><subject>Virus Internalization - drug effects</subject><subject>Virus Replication - drug effects</subject><subject>Viruses</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkkuP0zAUhSMEYobCP0AQiQ0sWvxI_NggVSMelQaQeKwtJ7nOuErijJ1UwK_ndtoZTSU2yAtbN985se-5WfackhXlkr7dhjkOtluNdeVXlBDOJXuQndOy5EvJS_Xw3vkse5LSFplSafE4O2MFk4oQfZ61n-du8qm2HeR9aKDzQ5sHl_vBdTMMf2y-znc-zmlfgXryYcjTPI4hTimfriBvYAddGHsYpr2u8RGppUUSjewweVTbLj3NHjnc4NlxX2Q_P7z_cfFpefn14-ZifbmsBefTkgrtFKlJRVylpKWCUClryh2oRjrKtJJVWTJiCZMgCigqEI0jFQOtXdmUfJG9PPiOXUjm2KNkaCEUvl0qhcTmQDTBbs0YfW_jbxOsNzeFEFtj4-TrDgzTDjTeS1Nri0Y7K1TBK1kwVUjdgESvd8e_zVUPTY1NwMeemJ5-GfyVacPOcMWFxDwW2eujQQzXM6TJ9BgGdJ0dIMw392ZUlaJkiL46oC1mZTCNgI71HjdrXnJGGZUCqdU_KFwN9L4OAziP9RPBmxMBMhP8mlo7p2Q237_9B_vllC0ObB1DShHcXVcoMfsBvg3H7AfYHAcYZS_ud_ROdDux_C_eQO06</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Heldt, Frank S</creator><creator>Frensing, Timo</creator><creator>Pflugmacher, Antje</creator><creator>Gröpler, Robin</creator><creator>Peschel, Britta</creator><creator>Reichl, Udo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131101</creationdate><title>Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals</title><author>Heldt, Frank S ; Frensing, Timo ; Pflugmacher, Antje ; Gröpler, Robin ; Peschel, Britta ; Reichl, Udo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-169f80c0b0fb87a160177c13fe8d7f12987b5520a027e64e4be6df0b2e99f5d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Antiviral agents</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Avian influenza</topic><topic>Cell Death</topic><topic>Computational Biology</topic><topic>Dogs</topic><topic>Dosage and administration</topic><topic>Drug Discovery - methods</topic><topic>Drug resistance</topic><topic>Extracellular Space - virology</topic><topic>Genomes</topic><topic>Host-parasite relationships</topic><topic>Humans</topic><topic>Influenza</topic><topic>Influenza A virus - drug effects</topic><topic>Influenza A virus - physiology</topic><topic>Influenza, Human - virology</topic><topic>Intracellular Space - virology</topic><topic>Licenses</topic><topic>Madin Darby Canine Kidney Cells</topic><topic>Microbiology</topic><topic>Models, Biological</topic><topic>Physiological aspects</topic><topic>Prevention</topic><topic>Proteins</topic><topic>Virus Internalization - drug effects</topic><topic>Virus Replication - drug effects</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heldt, Frank S</creatorcontrib><creatorcontrib>Frensing, Timo</creatorcontrib><creatorcontrib>Pflugmacher, Antje</creatorcontrib><creatorcontrib>Gröpler, Robin</creatorcontrib><creatorcontrib>Peschel, Britta</creatorcontrib><creatorcontrib>Reichl, Udo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heldt, Frank S</au><au>Frensing, Timo</au><au>Pflugmacher, Antje</au><au>Gröpler, Robin</au><au>Peschel, Britta</au><au>Reichl, Udo</au><au>Koelle, Katia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>9</volume><issue>11</issue><spage>e1003372</spage><epage>e1003372</epage><pages>e1003372-e1003372</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Influenza A viruses are respiratory pathogens that cause seasonal epidemics with up to 500,000 deaths each year. Yet there are currently only two classes of antivirals licensed for treatment and drug-resistant strains are on the rise. A major challenge for the discovery of new anti-influenza agents is the identification of drug targets that efficiently interfere with viral replication. To support this step, we developed a multiscale model of influenza A virus infection which comprises both the intracellular level where the virus synthesizes its proteins, replicates its genome, and assembles new virions and the extracellular level where it spreads to new host cells. This integrated modeling approach recapitulates a wide range of experimental data across both scales including the time course of all three viral RNA species inside an infected cell and the infection dynamics in a cell population. It also allowed us to systematically study how interfering with specific steps of the viral life cycle affects virus production. We find that inhibitors of viral transcription, replication, protein synthesis, nuclear export, and assembly/release are most effective in decreasing virus titers whereas targeting virus entry primarily delays infection. In addition, our results suggest that for some antivirals therapy success strongly depends on the lifespan of infected cells and, thus, on the dynamics of virus-induced apoptosis or the host's immune response. Hence, the proposed model provides a systems-level understanding of influenza A virus infection and therapy as well as an ideal platform to include further levels of complexity toward a comprehensive description of infectious diseases.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24278009</pmid><doi>10.1371/journal.pcbi.1003372</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2013-11, Vol.9 (11), p.e1003372-e1003372
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1468589788
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Animals
Antiviral agents
Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Avian influenza
Cell Death
Computational Biology
Dogs
Dosage and administration
Drug Discovery - methods
Drug resistance
Extracellular Space - virology
Genomes
Host-parasite relationships
Humans
Influenza
Influenza A virus - drug effects
Influenza A virus - physiology
Influenza, Human - virology
Intracellular Space - virology
Licenses
Madin Darby Canine Kidney Cells
Microbiology
Models, Biological
Physiological aspects
Prevention
Proteins
Virus Internalization - drug effects
Virus Replication - drug effects
Viruses
title Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A02%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20modeling%20of%20influenza%20A%20virus%20infection%20supports%20the%20development%20of%20direct-acting%20antivirals&rft.jtitle=PLoS%20computational%20biology&rft.au=Heldt,%20Frank%20S&rft.date=2013-11-01&rft.volume=9&rft.issue=11&rft.spage=e1003372&rft.epage=e1003372&rft.pages=e1003372-e1003372&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003372&rft_dat=%3Cgale_plos_%3EA353212176%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462185652&rft_id=info:pmid/24278009&rft_galeid=A353212176&rft_doaj_id=oai_doaj_org_article_29fe963391aa4d9fa6843b7428479de7&rfr_iscdi=true