Identification of key hinge residues important for nucleotide-dependent allostery in E. coli Hsp70/DnaK

DnaK is a molecular chaperone that has important roles in protein folding. The hydrolysis of ATP is essential to this activity, and the effects of nucleotides on the structure and function of DnaK have been extensively studied. However, the key residues that govern the conformational motions that de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2013, Vol.9 (11), p.e1003279
Hauptverfasser: Ung, Peter Man-Un, Thompson, Andrea D, Chang, Lyra, Gestwicki, Jason E, Carlson, Heather A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page e1003279
container_title PLoS computational biology
container_volume 9
creator Ung, Peter Man-Un
Thompson, Andrea D
Chang, Lyra
Gestwicki, Jason E
Carlson, Heather A
description DnaK is a molecular chaperone that has important roles in protein folding. The hydrolysis of ATP is essential to this activity, and the effects of nucleotides on the structure and function of DnaK have been extensively studied. However, the key residues that govern the conformational motions that define the apo, ATP-bound, and ADP-bound states are not entirely clear. Here, we used molecular dynamics simulations, mutagenesis, and enzymatic assays to explore the molecular basis of this process. Simulations of DnaK's nucleotide-binding domain (NBD) in the apo, ATP-bound, and ADP/Pi-bound states suggested that each state has a distinct conformation, consistent with available biochemical and structural information. The simulations further suggested that large shearing motions between subdomains I-A and II-A dominated the conversion between these conformations. We found that several evolutionally conserved residues, especially G228 and G229, appeared to function as a hinge for these motions, because they predominantly populated two distinct states depending on whether ATP or ADP/Pi was bound. Consistent with the importance of these "hinge" residues, alanine point mutations caused DnaK to have reduced chaperone activities in vitro and in vivo. Together, these results clarify how sub-domain motions communicate allostery in DnaK.
doi_str_mv 10.1371/journal.pcbi.1003279
format Article
fullrecord <record><control><sourceid>pubmed_plos_</sourceid><recordid>TN_cdi_plos_journals_1468589631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_daa8dd0cc7b34f938c71fe2f0167e2d6</doaj_id><sourcerecordid>24277995</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-91b3c7e263f24721ebbaa1a68ca6110584907baa6b6fd638f4e072b1d2d4e1e53</originalsourceid><addsrcrecordid>eNpVUdFuGyEQRFGrJHXzB1HLD5wDBwfcS6UqTRurkfrSPiMOFgf3DCc4R_LfF9dOlDyBdndmdnYQuqZkSZmkN5u0y9GMy8kOYUkJYa3sz9Al7TrWSNapd6_-F-hDKZs606lenKOLlrdS9n13idYrB3EOPlgzhxRx8vgv7PFjiGvAGUpwOyg4bKeUZxNn7FPGcWdHSHNw0DiYIB4YsBnHVGbIexwivltim8aA78skyc23aH5-RO-9GQtcnd4F-vP97vftffPw68fq9utDY3mv5qanA7MSWsF8y2VLYRiMoUYoawSlpFO8J7KWxCC8E0x5DkS2A3Wt40ChYwv0-cg71XX06UZFUy7UwTujdWJ1nHDJbPSUw9bkvU4m6P-FlNfa5DlUi9oZo5wj1sqBcd8zZSX10HpCRd2x6i_Ql5PabtiCs_UQ2YxvSN92YnjU6_SkmWJC9LwS8COBzamUDP4FS4k-xPxsQR9i1qeYK-zTa90X0HOu7B-NBKi5</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identification of key hinge residues important for nucleotide-dependent allostery in E. coli Hsp70/DnaK</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ung, Peter Man-Un ; Thompson, Andrea D ; Chang, Lyra ; Gestwicki, Jason E ; Carlson, Heather A</creator><creatorcontrib>Ung, Peter Man-Un ; Thompson, Andrea D ; Chang, Lyra ; Gestwicki, Jason E ; Carlson, Heather A</creatorcontrib><description>DnaK is a molecular chaperone that has important roles in protein folding. The hydrolysis of ATP is essential to this activity, and the effects of nucleotides on the structure and function of DnaK have been extensively studied. However, the key residues that govern the conformational motions that define the apo, ATP-bound, and ADP-bound states are not entirely clear. Here, we used molecular dynamics simulations, mutagenesis, and enzymatic assays to explore the molecular basis of this process. Simulations of DnaK's nucleotide-binding domain (NBD) in the apo, ATP-bound, and ADP/Pi-bound states suggested that each state has a distinct conformation, consistent with available biochemical and structural information. The simulations further suggested that large shearing motions between subdomains I-A and II-A dominated the conversion between these conformations. We found that several evolutionally conserved residues, especially G228 and G229, appeared to function as a hinge for these motions, because they predominantly populated two distinct states depending on whether ATP or ADP/Pi was bound. Consistent with the importance of these "hinge" residues, alanine point mutations caused DnaK to have reduced chaperone activities in vitro and in vivo. Together, these results clarify how sub-domain motions communicate allostery in DnaK.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003279</identifier><identifier>PMID: 24277995</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Allosteric Regulation - genetics ; Binding Sites ; E coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Heat shock proteins ; HSP70 Heat-Shock Proteins - chemistry ; HSP70 Heat-Shock Proteins - genetics ; HSP70 Heat-Shock Proteins - metabolism ; Molecular Dynamics Simulation ; Mutagenesis ; Mutation ; Nucleotides - chemistry ; Nucleotides - metabolism ; Point Mutation - genetics ; Protein folding ; Protein Structure, Tertiary ; Studies</subject><ispartof>PLoS computational biology, 2013, Vol.9 (11), p.e1003279</ispartof><rights>2013 Ung et al 2013 Ung et al</rights><rights>2013 Ung et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ung PM-U, Thompson AD, Chang L, Gestwicki JE, Carlson HA (2013) Identification of Key Hinge Residues Important for Nucleotide-Dependent Allostery in E. coli Hsp70/DnaK. PLoS Comput Biol 9(11): e1003279. doi:10.1371/journal.pcbi.1003279</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-91b3c7e263f24721ebbaa1a68ca6110584907baa6b6fd638f4e072b1d2d4e1e53</citedby><cites>FETCH-LOGICAL-c498t-91b3c7e263f24721ebbaa1a68ca6110584907baa6b6fd638f4e072b1d2d4e1e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836694/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836694/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,4010,23845,27900,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24277995$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ung, Peter Man-Un</creatorcontrib><creatorcontrib>Thompson, Andrea D</creatorcontrib><creatorcontrib>Chang, Lyra</creatorcontrib><creatorcontrib>Gestwicki, Jason E</creatorcontrib><creatorcontrib>Carlson, Heather A</creatorcontrib><title>Identification of key hinge residues important for nucleotide-dependent allostery in E. coli Hsp70/DnaK</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>DnaK is a molecular chaperone that has important roles in protein folding. The hydrolysis of ATP is essential to this activity, and the effects of nucleotides on the structure and function of DnaK have been extensively studied. However, the key residues that govern the conformational motions that define the apo, ATP-bound, and ADP-bound states are not entirely clear. Here, we used molecular dynamics simulations, mutagenesis, and enzymatic assays to explore the molecular basis of this process. Simulations of DnaK's nucleotide-binding domain (NBD) in the apo, ATP-bound, and ADP/Pi-bound states suggested that each state has a distinct conformation, consistent with available biochemical and structural information. The simulations further suggested that large shearing motions between subdomains I-A and II-A dominated the conversion between these conformations. We found that several evolutionally conserved residues, especially G228 and G229, appeared to function as a hinge for these motions, because they predominantly populated two distinct states depending on whether ATP or ADP/Pi was bound. Consistent with the importance of these "hinge" residues, alanine point mutations caused DnaK to have reduced chaperone activities in vitro and in vivo. Together, these results clarify how sub-domain motions communicate allostery in DnaK.</description><subject>Allosteric Regulation - genetics</subject><subject>Binding Sites</subject><subject>E coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Heat shock proteins</subject><subject>HSP70 Heat-Shock Proteins - chemistry</subject><subject>HSP70 Heat-Shock Proteins - genetics</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Nucleotides - chemistry</subject><subject>Nucleotides - metabolism</subject><subject>Point Mutation - genetics</subject><subject>Protein folding</subject><subject>Protein Structure, Tertiary</subject><subject>Studies</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpVUdFuGyEQRFGrJHXzB1HLD5wDBwfcS6UqTRurkfrSPiMOFgf3DCc4R_LfF9dOlDyBdndmdnYQuqZkSZmkN5u0y9GMy8kOYUkJYa3sz9Al7TrWSNapd6_-F-hDKZs606lenKOLlrdS9n13idYrB3EOPlgzhxRx8vgv7PFjiGvAGUpwOyg4bKeUZxNn7FPGcWdHSHNw0DiYIB4YsBnHVGbIexwivltim8aA78skyc23aH5-RO-9GQtcnd4F-vP97vftffPw68fq9utDY3mv5qanA7MSWsF8y2VLYRiMoUYoawSlpFO8J7KWxCC8E0x5DkS2A3Wt40ChYwv0-cg71XX06UZFUy7UwTujdWJ1nHDJbPSUw9bkvU4m6P-FlNfa5DlUi9oZo5wj1sqBcd8zZSX10HpCRd2x6i_Ql5PabtiCs_UQ2YxvSN92YnjU6_SkmWJC9LwS8COBzamUDP4FS4k-xPxsQR9i1qeYK-zTa90X0HOu7B-NBKi5</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Ung, Peter Man-Un</creator><creator>Thompson, Andrea D</creator><creator>Chang, Lyra</creator><creator>Gestwicki, Jason E</creator><creator>Carlson, Heather A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>2013</creationdate><title>Identification of key hinge residues important for nucleotide-dependent allostery in E. coli Hsp70/DnaK</title><author>Ung, Peter Man-Un ; Thompson, Andrea D ; Chang, Lyra ; Gestwicki, Jason E ; Carlson, Heather A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-91b3c7e263f24721ebbaa1a68ca6110584907baa6b6fd638f4e072b1d2d4e1e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Allosteric Regulation - genetics</topic><topic>Binding Sites</topic><topic>E coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Heat shock proteins</topic><topic>HSP70 Heat-Shock Proteins - chemistry</topic><topic>HSP70 Heat-Shock Proteins - genetics</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Nucleotides - chemistry</topic><topic>Nucleotides - metabolism</topic><topic>Point Mutation - genetics</topic><topic>Protein folding</topic><topic>Protein Structure, Tertiary</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ung, Peter Man-Un</creatorcontrib><creatorcontrib>Thompson, Andrea D</creatorcontrib><creatorcontrib>Chang, Lyra</creatorcontrib><creatorcontrib>Gestwicki, Jason E</creatorcontrib><creatorcontrib>Carlson, Heather A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ung, Peter Man-Un</au><au>Thompson, Andrea D</au><au>Chang, Lyra</au><au>Gestwicki, Jason E</au><au>Carlson, Heather A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of key hinge residues important for nucleotide-dependent allostery in E. coli Hsp70/DnaK</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013</date><risdate>2013</risdate><volume>9</volume><issue>11</issue><spage>e1003279</spage><pages>e1003279-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>DnaK is a molecular chaperone that has important roles in protein folding. The hydrolysis of ATP is essential to this activity, and the effects of nucleotides on the structure and function of DnaK have been extensively studied. However, the key residues that govern the conformational motions that define the apo, ATP-bound, and ADP-bound states are not entirely clear. Here, we used molecular dynamics simulations, mutagenesis, and enzymatic assays to explore the molecular basis of this process. Simulations of DnaK's nucleotide-binding domain (NBD) in the apo, ATP-bound, and ADP/Pi-bound states suggested that each state has a distinct conformation, consistent with available biochemical and structural information. The simulations further suggested that large shearing motions between subdomains I-A and II-A dominated the conversion between these conformations. We found that several evolutionally conserved residues, especially G228 and G229, appeared to function as a hinge for these motions, because they predominantly populated two distinct states depending on whether ATP or ADP/Pi was bound. Consistent with the importance of these "hinge" residues, alanine point mutations caused DnaK to have reduced chaperone activities in vitro and in vivo. Together, these results clarify how sub-domain motions communicate allostery in DnaK.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24277995</pmid><doi>10.1371/journal.pcbi.1003279</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2013, Vol.9 (11), p.e1003279
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_1468589631
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Allosteric Regulation - genetics
Binding Sites
E coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
Heat shock proteins
HSP70 Heat-Shock Proteins - chemistry
HSP70 Heat-Shock Proteins - genetics
HSP70 Heat-Shock Proteins - metabolism
Molecular Dynamics Simulation
Mutagenesis
Mutation
Nucleotides - chemistry
Nucleotides - metabolism
Point Mutation - genetics
Protein folding
Protein Structure, Tertiary
Studies
title Identification of key hinge residues important for nucleotide-dependent allostery in E. coli Hsp70/DnaK
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T02%3A10%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20key%20hinge%20residues%20important%20for%20nucleotide-dependent%20allostery%20in%20E.%20coli%20Hsp70/DnaK&rft.jtitle=PLoS%20computational%20biology&rft.au=Ung,%20Peter%20Man-Un&rft.date=2013&rft.volume=9&rft.issue=11&rft.spage=e1003279&rft.pages=e1003279-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003279&rft_dat=%3Cpubmed_plos_%3E24277995%3C/pubmed_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/24277995&rft_doaj_id=oai_doaj_org_article_daa8dd0cc7b34f938c71fe2f0167e2d6&rfr_iscdi=true