Improving embryonic stem cell expansion through the combination of perfusion and Bioprocess model design
High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoi...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-12, Vol.8 (12), p.e81728 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | e81728 |
container_title | PloS one |
container_volume | 8 |
creator | Yeo, David Kiparissides, Alexandros Cha, Jae Min Aguilar-Gallardo, Cristobal Polak, Julia M Tsiridis, Elefterios Pistikopoulos, Efstratios N Mantalaris, Athanasios |
description | High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement.
To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality 'naïve' mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency ('stemness') genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment.
The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization. |
doi_str_mv | 10.1371/journal.pone.0081728 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1466544234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478345603</galeid><doaj_id>oai_doaj_org_article_850871e5eb4b4e51889135931431e1cd</doaj_id><sourcerecordid>A478345603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-4016188e1aaf0d295c85a4e00be9724c53fd8b3b7478ed607bd380c77882d5c93</originalsourceid><addsrcrecordid>eNqNkltr3DAQhU1padK0_6C0hkKhD7uVLMmSXwpp6GUhEOjtVcjS2NZiS1vJDsm_rzbrhDW0UPQwYvTN0XA4WfYSozUmHL_f-ik41a933sEaIYF5IR5lp7gixaosEHl8dD_JnsW4RYgRUZZPs5OCElJVjJ9m3WbYBX9tXZvDUIdb76zO4whDrqHvc7jZKRetd_nYBT-1XaqQaz_U1qlx3_dNvoPQTHeQcib_aH1S1BBjPngDfW4g2tY9z540qo_wYq5n2c_Pn35cfF1dXn3ZXJxfrjRnYlxRhEssBGClGmSKimnBFAWEaqh4QTUjjRE1qTnlAkyJeG2IQJpzIQrDdEXOstcH3V3vo5xNihLTsmSUFoQmYnMgjFdbuQt2UOFWemXlXcOHVqowWt2DFAwJjoFBTWsKLC1WYcIqginBgLVJWh_m36Z6AKPBjUH1C9Hli7OdbP21JIKJosRJ4M0sEPzvCeL4j5VnqlVpK-san8T0YKOW58kIQlmJSKLWf6HSMTBYnWLS2NRfDLxbDCRmhJuxVVOMcvP92_-zV7-W7NsjtgPVj130_bQPTFyC9ADq4GMM0Dw4h5Hcp_zeDblPuZxTnsZeHbv-MHQfa_IHlYv4Ag</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1466544234</pqid></control><display><type>article</type><title>Improving embryonic stem cell expansion through the combination of perfusion and Bioprocess model design</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yeo, David ; Kiparissides, Alexandros ; Cha, Jae Min ; Aguilar-Gallardo, Cristobal ; Polak, Julia M ; Tsiridis, Elefterios ; Pistikopoulos, Efstratios N ; Mantalaris, Athanasios</creator><contributor>Cooney, Austin John</contributor><creatorcontrib>Yeo, David ; Kiparissides, Alexandros ; Cha, Jae Min ; Aguilar-Gallardo, Cristobal ; Polak, Julia M ; Tsiridis, Elefterios ; Pistikopoulos, Efstratios N ; Mantalaris, Athanasios ; Cooney, Austin John</creatorcontrib><description>High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement.
To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality 'naïve' mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency ('stemness') genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment.
The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0081728</identifier><identifier>PMID: 24339957</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Batch Cell Culture Techniques - instrumentation ; Batch Cell Culture Techniques - methods ; Batch culture ; Bioengineering ; Bioreactors ; Biotechnology ; Byproducts ; Cell culture ; Cell Proliferation ; Chemical engineering ; Data processing ; Differentiation ; Embryo cells ; Embryonic stem cells ; Embryonic Stem Cells - cytology ; Embryonic Stem Cells - metabolism ; Expansion ; Feeding ; Gene expression ; Gene Expression Regulation ; Growth kinetics ; Hydrogels ; Kinetics ; Leukemia ; Mathematical models ; Metabolism ; Metabolites ; Mice ; Models, Biological ; Nutritional requirements ; Optimization ; Parameter identification ; Perfusion ; Pluripotency ; Pluripotent Stem Cells - cytology ; Propagation ; Robustness (mathematics) ; Sensitivity analysis ; Stem cell transplantation ; Stem cells ; Teratoma ; Tissue engineering</subject><ispartof>PloS one, 2013-12, Vol.8 (12), p.e81728</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Yeo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Yeo et al 2013 Yeo et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-4016188e1aaf0d295c85a4e00be9724c53fd8b3b7478ed607bd380c77882d5c93</citedby><cites>FETCH-LOGICAL-c758t-4016188e1aaf0d295c85a4e00be9724c53fd8b3b7478ed607bd380c77882d5c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858261/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858261/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24339957$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cooney, Austin John</contributor><creatorcontrib>Yeo, David</creatorcontrib><creatorcontrib>Kiparissides, Alexandros</creatorcontrib><creatorcontrib>Cha, Jae Min</creatorcontrib><creatorcontrib>Aguilar-Gallardo, Cristobal</creatorcontrib><creatorcontrib>Polak, Julia M</creatorcontrib><creatorcontrib>Tsiridis, Elefterios</creatorcontrib><creatorcontrib>Pistikopoulos, Efstratios N</creatorcontrib><creatorcontrib>Mantalaris, Athanasios</creatorcontrib><title>Improving embryonic stem cell expansion through the combination of perfusion and Bioprocess model design</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement.
To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality 'naïve' mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency ('stemness') genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment.
The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization.</description><subject>Animals</subject><subject>Batch Cell Culture Techniques - instrumentation</subject><subject>Batch Cell Culture Techniques - methods</subject><subject>Batch culture</subject><subject>Bioengineering</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Byproducts</subject><subject>Cell culture</subject><subject>Cell Proliferation</subject><subject>Chemical engineering</subject><subject>Data processing</subject><subject>Differentiation</subject><subject>Embryo cells</subject><subject>Embryonic stem cells</subject><subject>Embryonic Stem Cells - cytology</subject><subject>Embryonic Stem Cells - metabolism</subject><subject>Expansion</subject><subject>Feeding</subject><subject>Gene expression</subject><subject>Gene Expression Regulation</subject><subject>Growth kinetics</subject><subject>Hydrogels</subject><subject>Kinetics</subject><subject>Leukemia</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Mice</subject><subject>Models, Biological</subject><subject>Nutritional requirements</subject><subject>Optimization</subject><subject>Parameter identification</subject><subject>Perfusion</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - cytology</subject><subject>Propagation</subject><subject>Robustness (mathematics)</subject><subject>Sensitivity analysis</subject><subject>Stem cell transplantation</subject><subject>Stem cells</subject><subject>Teratoma</subject><subject>Tissue engineering</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkltr3DAQhU1padK0_6C0hkKhD7uVLMmSXwpp6GUhEOjtVcjS2NZiS1vJDsm_rzbrhDW0UPQwYvTN0XA4WfYSozUmHL_f-ik41a933sEaIYF5IR5lp7gixaosEHl8dD_JnsW4RYgRUZZPs5OCElJVjJ9m3WbYBX9tXZvDUIdb76zO4whDrqHvc7jZKRetd_nYBT-1XaqQaz_U1qlx3_dNvoPQTHeQcib_aH1S1BBjPngDfW4g2tY9z540qo_wYq5n2c_Pn35cfF1dXn3ZXJxfrjRnYlxRhEssBGClGmSKimnBFAWEaqh4QTUjjRE1qTnlAkyJeG2IQJpzIQrDdEXOstcH3V3vo5xNihLTsmSUFoQmYnMgjFdbuQt2UOFWemXlXcOHVqowWt2DFAwJjoFBTWsKLC1WYcIqginBgLVJWh_m36Z6AKPBjUH1C9Hli7OdbP21JIKJosRJ4M0sEPzvCeL4j5VnqlVpK-san8T0YKOW58kIQlmJSKLWf6HSMTBYnWLS2NRfDLxbDCRmhJuxVVOMcvP92_-zV7-W7NsjtgPVj130_bQPTFyC9ADq4GMM0Dw4h5Hcp_zeDblPuZxTnsZeHbv-MHQfa_IHlYv4Ag</recordid><startdate>20131210</startdate><enddate>20131210</enddate><creator>Yeo, David</creator><creator>Kiparissides, Alexandros</creator><creator>Cha, Jae Min</creator><creator>Aguilar-Gallardo, Cristobal</creator><creator>Polak, Julia M</creator><creator>Tsiridis, Elefterios</creator><creator>Pistikopoulos, Efstratios N</creator><creator>Mantalaris, Athanasios</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131210</creationdate><title>Improving embryonic stem cell expansion through the combination of perfusion and Bioprocess model design</title><author>Yeo, David ; Kiparissides, Alexandros ; Cha, Jae Min ; Aguilar-Gallardo, Cristobal ; Polak, Julia M ; Tsiridis, Elefterios ; Pistikopoulos, Efstratios N ; Mantalaris, Athanasios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-4016188e1aaf0d295c85a4e00be9724c53fd8b3b7478ed607bd380c77882d5c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Animals</topic><topic>Batch Cell Culture Techniques - instrumentation</topic><topic>Batch Cell Culture Techniques - methods</topic><topic>Batch culture</topic><topic>Bioengineering</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Byproducts</topic><topic>Cell culture</topic><topic>Cell Proliferation</topic><topic>Chemical engineering</topic><topic>Data processing</topic><topic>Differentiation</topic><topic>Embryo cells</topic><topic>Embryonic stem cells</topic><topic>Embryonic Stem Cells - cytology</topic><topic>Embryonic Stem Cells - metabolism</topic><topic>Expansion</topic><topic>Feeding</topic><topic>Gene expression</topic><topic>Gene Expression Regulation</topic><topic>Growth kinetics</topic><topic>Hydrogels</topic><topic>Kinetics</topic><topic>Leukemia</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Mice</topic><topic>Models, Biological</topic><topic>Nutritional requirements</topic><topic>Optimization</topic><topic>Parameter identification</topic><topic>Perfusion</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - cytology</topic><topic>Propagation</topic><topic>Robustness (mathematics)</topic><topic>Sensitivity analysis</topic><topic>Stem cell transplantation</topic><topic>Stem cells</topic><topic>Teratoma</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeo, David</creatorcontrib><creatorcontrib>Kiparissides, Alexandros</creatorcontrib><creatorcontrib>Cha, Jae Min</creatorcontrib><creatorcontrib>Aguilar-Gallardo, Cristobal</creatorcontrib><creatorcontrib>Polak, Julia M</creatorcontrib><creatorcontrib>Tsiridis, Elefterios</creatorcontrib><creatorcontrib>Pistikopoulos, Efstratios N</creatorcontrib><creatorcontrib>Mantalaris, Athanasios</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeo, David</au><au>Kiparissides, Alexandros</au><au>Cha, Jae Min</au><au>Aguilar-Gallardo, Cristobal</au><au>Polak, Julia M</au><au>Tsiridis, Elefterios</au><au>Pistikopoulos, Efstratios N</au><au>Mantalaris, Athanasios</au><au>Cooney, Austin John</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving embryonic stem cell expansion through the combination of perfusion and Bioprocess model design</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-12-10</date><risdate>2013</risdate><volume>8</volume><issue>12</issue><spage>e81728</spage><pages>e81728-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>High proliferative and differentiation capacity renders embryonic stem cells (ESCs) a promising cell source for tissue engineering and cell-based therapies. Harnessing their potential, however, requires well-designed, efficient and reproducible expansion and differentiation protocols as well as avoiding hazardous by-products, such as teratoma formation. Traditional, standard culture methodologies are fragmented and limited in their fed-batch feeding strategies that afford a sub-optimal environment for cellular metabolism. Herein, we investigate the impact of metabolic stress as a result of inefficient feeding utilizing a novel perfusion bioreactor and a mathematical model to achieve bioprocess improvement.
To characterize nutritional requirements, the expansion of undifferentiated murine ESCs (mESCs) encapsulated in hydrogels was performed in batch and perfusion cultures using bioreactors. Despite sufficient nutrient and growth factor provision, the accumulation of inhibitory metabolites resulted in the unscheduled differentiation of mESCs and a decline in their cell numbers in the batch cultures. In contrast, perfusion cultures maintained metabolite concentration below toxic levels, resulting in the robust expansion (>16-fold) of high quality 'naïve' mESCs within 4 days. A multi-scale mathematical model describing population segregated growth kinetics, metabolism and the expression of selected pluripotency ('stemness') genes was implemented to maximize information from available experimental data. A global sensitivity analysis (GSA) was employed that identified significant (6/29) model parameters and enabled model validation. Predicting the preferential propagation of undifferentiated ESCs in perfusion culture conditions demonstrates synchrony between theory and experiment.
The limitations of batch culture highlight the importance of cellular metabolism in maintaining pluripotency, which necessitates the design of suitable ESC bioprocesses. We propose a novel investigational framework that integrates a novel perfusion culture platform (controlled metabolic conditions) with mathematical modeling (information maximization) to enhance ESC bioprocess productivity and facilitate bioprocess optimization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24339957</pmid><doi>10.1371/journal.pone.0081728</doi><tpages>e81728</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-12, Vol.8 (12), p.e81728 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1466544234 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Batch Cell Culture Techniques - instrumentation Batch Cell Culture Techniques - methods Batch culture Bioengineering Bioreactors Biotechnology Byproducts Cell culture Cell Proliferation Chemical engineering Data processing Differentiation Embryo cells Embryonic stem cells Embryonic Stem Cells - cytology Embryonic Stem Cells - metabolism Expansion Feeding Gene expression Gene Expression Regulation Growth kinetics Hydrogels Kinetics Leukemia Mathematical models Metabolism Metabolites Mice Models, Biological Nutritional requirements Optimization Parameter identification Perfusion Pluripotency Pluripotent Stem Cells - cytology Propagation Robustness (mathematics) Sensitivity analysis Stem cell transplantation Stem cells Teratoma Tissue engineering |
title | Improving embryonic stem cell expansion through the combination of perfusion and Bioprocess model design |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A28%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20embryonic%20stem%20cell%20expansion%20through%20the%20combination%20of%20perfusion%20and%20Bioprocess%20model%20design&rft.jtitle=PloS%20one&rft.au=Yeo,%20David&rft.date=2013-12-10&rft.volume=8&rft.issue=12&rft.spage=e81728&rft.pages=e81728-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0081728&rft_dat=%3Cgale_plos_%3EA478345603%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1466544234&rft_id=info:pmid/24339957&rft_galeid=A478345603&rft_doaj_id=oai_doaj_org_article_850871e5eb4b4e51889135931431e1cd&rfr_iscdi=true |