Probing functional properties of nociceptive axons using a microfluidic culture system
Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstra...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-11, Vol.8 (11), p.e80722-e80722 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e80722 |
---|---|
container_issue | 11 |
container_start_page | e80722 |
container_title | PloS one |
container_volume | 8 |
creator | Tsantoulas, Christoforos Farmer, Clare Machado, Patricia Baba, Katsuhiro McMahon, Stephen B Raouf, Ramin |
description | Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstrate how an MFC based cell culture system can be readily adapted for the study of axonal function in vitro. We illustrate the ease and versatility to assay electrogenesis and conduction of action potentials (APs) in naïve, damaged or sensitized DRG axons using calcium imaging at the soma for pharmacological screening or patch-clamp electrophysiology for detailed biophysical characterisation. To demonstrate the adaptability of the system, we report by way of example functional changes in nociceptor axons following sensitization by neurotrophins and axotomy in vitro. We show that NGF can locally sensitize axonal responses to capsaicin, independent of the soma. Axotomizing neurons in MFC results in a significant increase in the proportion of neurons that respond to axonal stimulation, and interestingly leads to accumulation of Nav1.8 channels in regenerating axons. Axotomy also augmented AP amplitude following axotomy and altered activation thresholds in a subpopulation of regenerating axons. We further show how the system can readily be used to study modulation of axonal function by non-neuronal cells such as keratinocytes. Hence we describe a novel in vitro platform for the study of axonal function and a surrogate model for nerve injury and sensitization. |
doi_str_mv | 10.1371/journal.pone.0080722 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1465024138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478186327</galeid><doaj_id>oai_doaj_org_article_d54372b54f884250a3d7710e915f2996</doaj_id><sourcerecordid>A478186327</sourcerecordid><originalsourceid>FETCH-LOGICAL-c784t-34c98c92ff64e577bf33295f6299de1862c5126bc92f10bd595e63dd085c4c6d3</originalsourceid><addsrcrecordid>eNqNkktr3DAUhU1padK0_6C0hkJpFzPVW_amEEIfA4GUPrIVsh4zGjyWI8kh-feVM04YlyyKFhbyd47uvTpF8RqCJcQcftr6IXSyXfa-M0sAKsARelIcwxqjBUMAPz3YHxUvYtwCQHHF2PPiCBHEKwzhcXH5I_jGdevSDp1KzmfHsg--NyE5E0tvy84rp0yf3LUp5Y3vYjnEUSDLnVPB23Zw2qlSDW0aginjbUxm97J4ZmUbzavpe1L8-frl99n3xfnFt9XZ6flC8YqkBSaqrlSNrGXEUM4bizGqqWWorrWBFUOKQsSaEYGg0bSmhmGtQUUVUUzjk-Lt3rdvfRTTSKKAhFGACMRVJlZ7Qnu5FX1wOxluhZdO3B34sBYy96paIzQlmKOGEltVBFEgseYcAlNDanNBLHt9nm4bmp3RynQpyHZmOv_TuY1Y-2uR66Ac02zwYTII_mowMYmdi8q0reyMH-7qRrlrguqMvvsHfby7iVrL3IDrrM_3qtFUnBJeZS-MeKaWj1B5aZPfMOfHunw-E3ycCTKTzE1ayyFGsfr18__Zi8s5-_6A3RjZpk307TAGL85BsgdzwmIMxj4MGQIxxv9-GmKMv5jin2VvDh_oQXSfd_wXGTf_Kg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1465024138</pqid></control><display><type>article</type><title>Probing functional properties of nociceptive axons using a microfluidic culture system</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Tsantoulas, Christoforos ; Farmer, Clare ; Machado, Patricia ; Baba, Katsuhiro ; McMahon, Stephen B ; Raouf, Ramin</creator><creatorcontrib>Tsantoulas, Christoforos ; Farmer, Clare ; Machado, Patricia ; Baba, Katsuhiro ; McMahon, Stephen B ; Raouf, Ramin</creatorcontrib><description>Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstrate how an MFC based cell culture system can be readily adapted for the study of axonal function in vitro. We illustrate the ease and versatility to assay electrogenesis and conduction of action potentials (APs) in naïve, damaged or sensitized DRG axons using calcium imaging at the soma for pharmacological screening or patch-clamp electrophysiology for detailed biophysical characterisation. To demonstrate the adaptability of the system, we report by way of example functional changes in nociceptor axons following sensitization by neurotrophins and axotomy in vitro. We show that NGF can locally sensitize axonal responses to capsaicin, independent of the soma. Axotomizing neurons in MFC results in a significant increase in the proportion of neurons that respond to axonal stimulation, and interestingly leads to accumulation of Nav1.8 channels in regenerating axons. Axotomy also augmented AP amplitude following axotomy and altered activation thresholds in a subpopulation of regenerating axons. We further show how the system can readily be used to study modulation of axonal function by non-neuronal cells such as keratinocytes. Hence we describe a novel in vitro platform for the study of axonal function and a surrogate model for nerve injury and sensitization.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0080722</identifier><identifier>PMID: 24278311</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials - drug effects ; Adaptability ; Age ; Animals ; Axons ; Axons - drug effects ; Axons - physiology ; Axotomy ; Biological Assay ; Calcium ; Calcium - metabolism ; Calcium imaging ; Capsaicin ; Capsaicin - pharmacology ; Cell Communication - drug effects ; Cell culture ; Cells, Cultured ; Coculture Techniques ; Conduction ; Diabetic neuropathy ; Electric Stimulation ; Electrophysiology ; Female ; Ganglia, Spinal - drug effects ; Ganglia, Spinal - injuries ; Ganglia, Spinal - pathology ; Keratinocytes ; Keratinocytes - cytology ; Keratinocytes - drug effects ; Male ; Mice, Inbred C57BL ; Microfluidics ; Microfluidics - instrumentation ; Microfluidics - methods ; Models, Biological ; Nerve growth factor ; Nerve Growth Factor - pharmacology ; Nervous system ; Nervous system diseases ; Neurological diseases ; Neurons ; Neurosciences ; Neurotrophic factors ; Neurotrophins ; Nociception - drug effects ; Pain ; Pain perception ; Patch-Clamp Techniques ; Pharmacology ; Proteins ; Rats, Wistar ; Rodents ; Sensory Receptor Cells - drug effects ; Sensory Receptor Cells - pathology ; Signal transduction ; Sodium Channel Blockers - pharmacology ; Sodium channels (voltage-gated) ; Synaptic Transmission - drug effects ; Synaptic Transmission - physiology ; TRPV Cation Channels - metabolism</subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e80722-e80722</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Tsantoulas et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Tsantoulas et al 2013 Tsantoulas et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c784t-34c98c92ff64e577bf33295f6299de1862c5126bc92f10bd595e63dd085c4c6d3</citedby><cites>FETCH-LOGICAL-c784t-34c98c92ff64e577bf33295f6299de1862c5126bc92f10bd595e63dd085c4c6d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835735/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3835735/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24278311$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tsantoulas, Christoforos</creatorcontrib><creatorcontrib>Farmer, Clare</creatorcontrib><creatorcontrib>Machado, Patricia</creatorcontrib><creatorcontrib>Baba, Katsuhiro</creatorcontrib><creatorcontrib>McMahon, Stephen B</creatorcontrib><creatorcontrib>Raouf, Ramin</creatorcontrib><title>Probing functional properties of nociceptive axons using a microfluidic culture system</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstrate how an MFC based cell culture system can be readily adapted for the study of axonal function in vitro. We illustrate the ease and versatility to assay electrogenesis and conduction of action potentials (APs) in naïve, damaged or sensitized DRG axons using calcium imaging at the soma for pharmacological screening or patch-clamp electrophysiology for detailed biophysical characterisation. To demonstrate the adaptability of the system, we report by way of example functional changes in nociceptor axons following sensitization by neurotrophins and axotomy in vitro. We show that NGF can locally sensitize axonal responses to capsaicin, independent of the soma. Axotomizing neurons in MFC results in a significant increase in the proportion of neurons that respond to axonal stimulation, and interestingly leads to accumulation of Nav1.8 channels in regenerating axons. Axotomy also augmented AP amplitude following axotomy and altered activation thresholds in a subpopulation of regenerating axons. We further show how the system can readily be used to study modulation of axonal function by non-neuronal cells such as keratinocytes. Hence we describe a novel in vitro platform for the study of axonal function and a surrogate model for nerve injury and sensitization.</description><subject>Action Potentials - drug effects</subject><subject>Adaptability</subject><subject>Age</subject><subject>Animals</subject><subject>Axons</subject><subject>Axons - drug effects</subject><subject>Axons - physiology</subject><subject>Axotomy</subject><subject>Biological Assay</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Calcium imaging</subject><subject>Capsaicin</subject><subject>Capsaicin - pharmacology</subject><subject>Cell Communication - drug effects</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>Coculture Techniques</subject><subject>Conduction</subject><subject>Diabetic neuropathy</subject><subject>Electric Stimulation</subject><subject>Electrophysiology</subject><subject>Female</subject><subject>Ganglia, Spinal - drug effects</subject><subject>Ganglia, Spinal - injuries</subject><subject>Ganglia, Spinal - pathology</subject><subject>Keratinocytes</subject><subject>Keratinocytes - cytology</subject><subject>Keratinocytes - drug effects</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Microfluidics</subject><subject>Microfluidics - instrumentation</subject><subject>Microfluidics - methods</subject><subject>Models, Biological</subject><subject>Nerve growth factor</subject><subject>Nerve Growth Factor - pharmacology</subject><subject>Nervous system</subject><subject>Nervous system diseases</subject><subject>Neurological diseases</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Neurotrophic factors</subject><subject>Neurotrophins</subject><subject>Nociception - drug effects</subject><subject>Pain</subject><subject>Pain perception</subject><subject>Patch-Clamp Techniques</subject><subject>Pharmacology</subject><subject>Proteins</subject><subject>Rats, Wistar</subject><subject>Rodents</subject><subject>Sensory Receptor Cells - drug effects</subject><subject>Sensory Receptor Cells - pathology</subject><subject>Signal transduction</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Sodium channels (voltage-gated)</subject><subject>Synaptic Transmission - drug effects</subject><subject>Synaptic Transmission - physiology</subject><subject>TRPV Cation Channels - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkktr3DAUhU1padK0_6C0hkJpFzPVW_amEEIfA4GUPrIVsh4zGjyWI8kh-feVM04YlyyKFhbyd47uvTpF8RqCJcQcftr6IXSyXfa-M0sAKsARelIcwxqjBUMAPz3YHxUvYtwCQHHF2PPiCBHEKwzhcXH5I_jGdevSDp1KzmfHsg--NyE5E0tvy84rp0yf3LUp5Y3vYjnEUSDLnVPB23Zw2qlSDW0aginjbUxm97J4ZmUbzavpe1L8-frl99n3xfnFt9XZ6flC8YqkBSaqrlSNrGXEUM4bizGqqWWorrWBFUOKQsSaEYGg0bSmhmGtQUUVUUzjk-Lt3rdvfRTTSKKAhFGACMRVJlZ7Qnu5FX1wOxluhZdO3B34sBYy96paIzQlmKOGEltVBFEgseYcAlNDanNBLHt9nm4bmp3RynQpyHZmOv_TuY1Y-2uR66Ac02zwYTII_mowMYmdi8q0reyMH-7qRrlrguqMvvsHfby7iVrL3IDrrM_3qtFUnBJeZS-MeKaWj1B5aZPfMOfHunw-E3ycCTKTzE1ayyFGsfr18__Zi8s5-_6A3RjZpk307TAGL85BsgdzwmIMxj4MGQIxxv9-GmKMv5jin2VvDh_oQXSfd_wXGTf_Kg</recordid><startdate>20131120</startdate><enddate>20131120</enddate><creator>Tsantoulas, Christoforos</creator><creator>Farmer, Clare</creator><creator>Machado, Patricia</creator><creator>Baba, Katsuhiro</creator><creator>McMahon, Stephen B</creator><creator>Raouf, Ramin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131120</creationdate><title>Probing functional properties of nociceptive axons using a microfluidic culture system</title><author>Tsantoulas, Christoforos ; Farmer, Clare ; Machado, Patricia ; Baba, Katsuhiro ; McMahon, Stephen B ; Raouf, Ramin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c784t-34c98c92ff64e577bf33295f6299de1862c5126bc92f10bd595e63dd085c4c6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - drug effects</topic><topic>Adaptability</topic><topic>Age</topic><topic>Animals</topic><topic>Axons</topic><topic>Axons - drug effects</topic><topic>Axons - physiology</topic><topic>Axotomy</topic><topic>Biological Assay</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Calcium imaging</topic><topic>Capsaicin</topic><topic>Capsaicin - pharmacology</topic><topic>Cell Communication - drug effects</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>Coculture Techniques</topic><topic>Conduction</topic><topic>Diabetic neuropathy</topic><topic>Electric Stimulation</topic><topic>Electrophysiology</topic><topic>Female</topic><topic>Ganglia, Spinal - drug effects</topic><topic>Ganglia, Spinal - injuries</topic><topic>Ganglia, Spinal - pathology</topic><topic>Keratinocytes</topic><topic>Keratinocytes - cytology</topic><topic>Keratinocytes - drug effects</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Microfluidics</topic><topic>Microfluidics - instrumentation</topic><topic>Microfluidics - methods</topic><topic>Models, Biological</topic><topic>Nerve growth factor</topic><topic>Nerve Growth Factor - pharmacology</topic><topic>Nervous system</topic><topic>Nervous system diseases</topic><topic>Neurological diseases</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Neurotrophic factors</topic><topic>Neurotrophins</topic><topic>Nociception - drug effects</topic><topic>Pain</topic><topic>Pain perception</topic><topic>Patch-Clamp Techniques</topic><topic>Pharmacology</topic><topic>Proteins</topic><topic>Rats, Wistar</topic><topic>Rodents</topic><topic>Sensory Receptor Cells - drug effects</topic><topic>Sensory Receptor Cells - pathology</topic><topic>Signal transduction</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Sodium channels (voltage-gated)</topic><topic>Synaptic Transmission - drug effects</topic><topic>Synaptic Transmission - physiology</topic><topic>TRPV Cation Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsantoulas, Christoforos</creatorcontrib><creatorcontrib>Farmer, Clare</creatorcontrib><creatorcontrib>Machado, Patricia</creatorcontrib><creatorcontrib>Baba, Katsuhiro</creatorcontrib><creatorcontrib>McMahon, Stephen B</creatorcontrib><creatorcontrib>Raouf, Ramin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsantoulas, Christoforos</au><au>Farmer, Clare</au><au>Machado, Patricia</au><au>Baba, Katsuhiro</au><au>McMahon, Stephen B</au><au>Raouf, Ramin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing functional properties of nociceptive axons using a microfluidic culture system</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-20</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e80722</spage><epage>e80722</epage><pages>e80722-e80722</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Pathological changes in axonal function are integral features of many neurological disorders, yet our knowledge of the molecular basis of axonal dysfunction remains limited. Microfluidic chambers (MFCs) can provide unique insight into the axonal compartment independent of the soma. Here we demonstrate how an MFC based cell culture system can be readily adapted for the study of axonal function in vitro. We illustrate the ease and versatility to assay electrogenesis and conduction of action potentials (APs) in naïve, damaged or sensitized DRG axons using calcium imaging at the soma for pharmacological screening or patch-clamp electrophysiology for detailed biophysical characterisation. To demonstrate the adaptability of the system, we report by way of example functional changes in nociceptor axons following sensitization by neurotrophins and axotomy in vitro. We show that NGF can locally sensitize axonal responses to capsaicin, independent of the soma. Axotomizing neurons in MFC results in a significant increase in the proportion of neurons that respond to axonal stimulation, and interestingly leads to accumulation of Nav1.8 channels in regenerating axons. Axotomy also augmented AP amplitude following axotomy and altered activation thresholds in a subpopulation of regenerating axons. We further show how the system can readily be used to study modulation of axonal function by non-neuronal cells such as keratinocytes. Hence we describe a novel in vitro platform for the study of axonal function and a surrogate model for nerve injury and sensitization.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24278311</pmid><doi>10.1371/journal.pone.0080722</doi><tpages>e80722</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-11, Vol.8 (11), p.e80722-e80722 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1465024138 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Action Potentials - drug effects Adaptability Age Animals Axons Axons - drug effects Axons - physiology Axotomy Biological Assay Calcium Calcium - metabolism Calcium imaging Capsaicin Capsaicin - pharmacology Cell Communication - drug effects Cell culture Cells, Cultured Coculture Techniques Conduction Diabetic neuropathy Electric Stimulation Electrophysiology Female Ganglia, Spinal - drug effects Ganglia, Spinal - injuries Ganglia, Spinal - pathology Keratinocytes Keratinocytes - cytology Keratinocytes - drug effects Male Mice, Inbred C57BL Microfluidics Microfluidics - instrumentation Microfluidics - methods Models, Biological Nerve growth factor Nerve Growth Factor - pharmacology Nervous system Nervous system diseases Neurological diseases Neurons Neurosciences Neurotrophic factors Neurotrophins Nociception - drug effects Pain Pain perception Patch-Clamp Techniques Pharmacology Proteins Rats, Wistar Rodents Sensory Receptor Cells - drug effects Sensory Receptor Cells - pathology Signal transduction Sodium Channel Blockers - pharmacology Sodium channels (voltage-gated) Synaptic Transmission - drug effects Synaptic Transmission - physiology TRPV Cation Channels - metabolism |
title | Probing functional properties of nociceptive axons using a microfluidic culture system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A36%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20functional%20properties%20of%20nociceptive%20axons%20using%20a%20microfluidic%20culture%20system&rft.jtitle=PloS%20one&rft.au=Tsantoulas,%20Christoforos&rft.date=2013-11-20&rft.volume=8&rft.issue=11&rft.spage=e80722&rft.epage=e80722&rft.pages=e80722-e80722&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0080722&rft_dat=%3Cgale_plos_%3EA478186327%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1465024138&rft_id=info:pmid/24278311&rft_galeid=A478186327&rft_doaj_id=oai_doaj_org_article_d54372b54f884250a3d7710e915f2996&rfr_iscdi=true |