New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII

Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an opero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-11, Vol.8 (11), p.e81168-e81168
Hauptverfasser: Bersch, Beate, Bougault, Catherine, Roux, Laure, Favier, Adrien, Vernet, Thierry, Durmort, Claire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e81168
container_issue 11
container_start_page e81168
container_title PloS one
container_volume 8
creator Bersch, Beate
Bougault, Catherine
Roux, Laure
Favier, Adrien
Vernet, Thierry
Durmort, Claire
description Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+) transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae) demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn(2+) transfer from the Zn(2+)-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD) to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn(2+) is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn(2+)-t-PhtD shows that the loss of Zn(2+) leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three β-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn(2+) scavenger for later release to the surface transporter AdcAII, leading to Zn(2+) uptake.
doi_str_mv 10.1371/journal.pone.0081168
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1462476244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7e7127325e36445c8227de1e79431605</doaj_id><sourcerecordid>1465863573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-39a6a7ecc4d055d8e9f29b8fb21752a14f7f857fd2f848af4038def4e0aa8993</originalsourceid><addsrcrecordid>eNptUk1vEzEUXCEQLYF_gMASFzgk-Gt3vRyQovLRSBEg0bvl2M-Jo429tb1FcOaH4zRp1VYcLD89z5vxG01VvSR4RlhL3m_DGL3qZ0PwMMNYENKIR9Up6RidNhSzx3fqk-pZSluMayaa5ml1QjkjlLbstPr7DX4h55Nbb3IqRQ5o41J2xnlAOTpl0BBDhgL5gFLox-yCRynHUecxAgoWKfQzRxhy0EHrMaHBw7gL3ilAPzb5EzJhp5xHyhv0x3ldWJVPFiIqWnOj54vF8-qJVX2CF8d7Ul18-Xxxdj5dfv-6OJsvp7pucJ6yTjWqBa25wXVtBHSWdithV5S0NVWE29aKurWGWsGFshwzYcBywEqJrmOT6vWBduhDkkf_kiS8obwthxfE4oAwQW3lEN1Oxd8yKCevGyGupYrZ6R5kCy0pDtIaWMN5rUXx0wCBtiveNsXpSfXxqDaudmA0-LJ4f4_0_ot3G7kOV5IJTjvWFIJ3B4LNg7Hz-VLuexh3vClSV6Rg3x7FYrgcIWW5c0lD3ysPYbzesRYNq1tWoG8eQP_vBD-gdAwpRbC3PyBY7vN3MyX3-ZPH_JWxV3eXvh26CRz7B3jd2ao</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462476244</pqid></control><display><type>article</type><title>New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII</title><source>DOAJ, Directory of Open Access Journals</source><source>PubMed Central (Open Access)</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Bersch, Beate ; Bougault, Catherine ; Roux, Laure ; Favier, Adrien ; Vernet, Thierry ; Durmort, Claire</creator><creatorcontrib>Bersch, Beate ; Bougault, Catherine ; Roux, Laure ; Favier, Adrien ; Vernet, Thierry ; Durmort, Claire</creatorcontrib><description>Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+) transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae) demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn(2+) transfer from the Zn(2+)-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD) to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn(2+) is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn(2+)-t-PhtD shows that the loss of Zn(2+) leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three β-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn(2+) scavenger for later release to the surface transporter AdcAII, leading to Zn(2+) uptake.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0081168</identifier><identifier>PMID: 24312273</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Amino Acid Sequence ; Amino acids ; Apoproteins - metabolism ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding Sites ; Biochemistry, Molecular Biology ; Biological Transport ; C-Terminus ; Carrier Proteins - metabolism ; Colonization ; Crystal structure ; E coli ; Escherichia coli ; Histidine ; Homeostasis ; Hydrolases - chemistry ; Hydrolases - metabolism ; Irritable bowel syndrome ; Life Sciences ; Membranes ; Metals ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; NMR ; Nuclear magnetic resonance ; Oxidative stress ; Polyhistidine ; Protein Structure, Secondary ; Proteins ; Salmonella ; Solutions ; Streptococcus infections ; Streptococcus pneumoniae ; Streptococcus pneumoniae - metabolism ; Streptococcus pyogenes ; Structural Biology ; Zinc ; Zinc - metabolism</subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e81168-e81168</ispartof><rights>2013 Bersch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 Bersch et al 2013 Bersch et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-39a6a7ecc4d055d8e9f29b8fb21752a14f7f857fd2f848af4038def4e0aa8993</citedby><cites>FETCH-LOGICAL-c560t-39a6a7ecc4d055d8e9f29b8fb21752a14f7f857fd2f848af4038def4e0aa8993</cites><orcidid>0000-0003-1138-4911 ; 0000-0003-2511-2300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842936/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842936/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24312273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00946605$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bersch, Beate</creatorcontrib><creatorcontrib>Bougault, Catherine</creatorcontrib><creatorcontrib>Roux, Laure</creatorcontrib><creatorcontrib>Favier, Adrien</creatorcontrib><creatorcontrib>Vernet, Thierry</creatorcontrib><creatorcontrib>Durmort, Claire</creatorcontrib><title>New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+) transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae) demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn(2+) transfer from the Zn(2+)-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD) to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn(2+) is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn(2+)-t-PhtD shows that the loss of Zn(2+) leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three β-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn(2+) scavenger for later release to the surface transporter AdcAII, leading to Zn(2+) uptake.</description><subject>Acids</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Apoproteins - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Transport</subject><subject>C-Terminus</subject><subject>Carrier Proteins - metabolism</subject><subject>Colonization</subject><subject>Crystal structure</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Histidine</subject><subject>Homeostasis</subject><subject>Hydrolases - chemistry</subject><subject>Hydrolases - metabolism</subject><subject>Irritable bowel syndrome</subject><subject>Life Sciences</subject><subject>Membranes</subject><subject>Metals</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidative stress</subject><subject>Polyhistidine</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Salmonella</subject><subject>Solutions</subject><subject>Streptococcus infections</subject><subject>Streptococcus pneumoniae</subject><subject>Streptococcus pneumoniae - metabolism</subject><subject>Streptococcus pyogenes</subject><subject>Structural Biology</subject><subject>Zinc</subject><subject>Zinc - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEUXCEQLYF_gMASFzgk-Gt3vRyQovLRSBEg0bvl2M-Jo429tb1FcOaH4zRp1VYcLD89z5vxG01VvSR4RlhL3m_DGL3qZ0PwMMNYENKIR9Up6RidNhSzx3fqk-pZSluMayaa5ml1QjkjlLbstPr7DX4h55Nbb3IqRQ5o41J2xnlAOTpl0BBDhgL5gFLox-yCRynHUecxAgoWKfQzRxhy0EHrMaHBw7gL3ilAPzb5EzJhp5xHyhv0x3ldWJVPFiIqWnOj54vF8-qJVX2CF8d7Ul18-Xxxdj5dfv-6OJsvp7pucJ6yTjWqBa25wXVtBHSWdithV5S0NVWE29aKurWGWsGFshwzYcBywEqJrmOT6vWBduhDkkf_kiS8obwthxfE4oAwQW3lEN1Oxd8yKCevGyGupYrZ6R5kCy0pDtIaWMN5rUXx0wCBtiveNsXpSfXxqDaudmA0-LJ4f4_0_ot3G7kOV5IJTjvWFIJ3B4LNg7Hz-VLuexh3vClSV6Rg3x7FYrgcIWW5c0lD3ysPYbzesRYNq1tWoG8eQP_vBD-gdAwpRbC3PyBY7vN3MyX3-ZPH_JWxV3eXvh26CRz7B3jd2ao</recordid><startdate>20131128</startdate><enddate>20131128</enddate><creator>Bersch, Beate</creator><creator>Bougault, Catherine</creator><creator>Roux, Laure</creator><creator>Favier, Adrien</creator><creator>Vernet, Thierry</creator><creator>Durmort, Claire</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1138-4911</orcidid><orcidid>https://orcid.org/0000-0003-2511-2300</orcidid></search><sort><creationdate>20131128</creationdate><title>New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII</title><author>Bersch, Beate ; Bougault, Catherine ; Roux, Laure ; Favier, Adrien ; Vernet, Thierry ; Durmort, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-39a6a7ecc4d055d8e9f29b8fb21752a14f7f857fd2f848af4038def4e0aa8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Apoproteins - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Transport</topic><topic>C-Terminus</topic><topic>Carrier Proteins - metabolism</topic><topic>Colonization</topic><topic>Crystal structure</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Histidine</topic><topic>Homeostasis</topic><topic>Hydrolases - chemistry</topic><topic>Hydrolases - metabolism</topic><topic>Irritable bowel syndrome</topic><topic>Life Sciences</topic><topic>Membranes</topic><topic>Metals</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidative stress</topic><topic>Polyhistidine</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Salmonella</topic><topic>Solutions</topic><topic>Streptococcus infections</topic><topic>Streptococcus pneumoniae</topic><topic>Streptococcus pneumoniae - metabolism</topic><topic>Streptococcus pyogenes</topic><topic>Structural Biology</topic><topic>Zinc</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bersch, Beate</creatorcontrib><creatorcontrib>Bougault, Catherine</creatorcontrib><creatorcontrib>Roux, Laure</creatorcontrib><creatorcontrib>Favier, Adrien</creatorcontrib><creatorcontrib>Vernet, Thierry</creatorcontrib><creatorcontrib>Durmort, Claire</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bersch, Beate</au><au>Bougault, Catherine</au><au>Roux, Laure</au><au>Favier, Adrien</au><au>Vernet, Thierry</au><au>Durmort, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-28</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e81168</spage><epage>e81168</epage><pages>e81168-e81168</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+) transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae) demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn(2+) transfer from the Zn(2+)-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD) to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn(2+) is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn(2+)-t-PhtD shows that the loss of Zn(2+) leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three β-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn(2+) scavenger for later release to the surface transporter AdcAII, leading to Zn(2+) uptake.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24312273</pmid><doi>10.1371/journal.pone.0081168</doi><orcidid>https://orcid.org/0000-0003-1138-4911</orcidid><orcidid>https://orcid.org/0000-0003-2511-2300</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-11, Vol.8 (11), p.e81168-e81168
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1462476244
source DOAJ, Directory of Open Access Journals; PubMed Central (Open Access); Public Library of Science (PLoS) Journals Open Access; MEDLINE; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Acids
Amino Acid Sequence
Amino acids
Apoproteins - metabolism
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Binding Sites
Biochemistry, Molecular Biology
Biological Transport
C-Terminus
Carrier Proteins - metabolism
Colonization
Crystal structure
E coli
Escherichia coli
Histidine
Homeostasis
Hydrolases - chemistry
Hydrolases - metabolism
Irritable bowel syndrome
Life Sciences
Membranes
Metals
Models, Molecular
Molecular biology
Molecular Sequence Data
NMR
Nuclear magnetic resonance
Oxidative stress
Polyhistidine
Protein Structure, Secondary
Proteins
Salmonella
Solutions
Streptococcus infections
Streptococcus pneumoniae
Streptococcus pneumoniae - metabolism
Streptococcus pyogenes
Structural Biology
Zinc
Zinc - metabolism
title New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20histidine%20triad%20proteins:%20solution%20structure%20of%20a%20Streptococcus%20pneumoniae%20PhtD%20domain%20and%20zinc%20transfer%20to%20AdcAII&rft.jtitle=PloS%20one&rft.au=Bersch,%20Beate&rft.date=2013-11-28&rft.volume=8&rft.issue=11&rft.spage=e81168&rft.epage=e81168&rft.pages=e81168-e81168&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0081168&rft_dat=%3Cproquest_plos_%3E1465863573%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462476244&rft_id=info:pmid/24312273&rft_doaj_id=oai_doaj_org_article_7e7127325e36445c8227de1e79431605&rfr_iscdi=true