New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII
Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an opero...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-11, Vol.8 (11), p.e81168-e81168 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e81168 |
---|---|
container_issue | 11 |
container_start_page | e81168 |
container_title | PloS one |
container_volume | 8 |
creator | Bersch, Beate Bougault, Catherine Roux, Laure Favier, Adrien Vernet, Thierry Durmort, Claire |
description | Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+) transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae) demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn(2+) transfer from the Zn(2+)-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD) to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn(2+) is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn(2+)-t-PhtD shows that the loss of Zn(2+) leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three β-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn(2+) scavenger for later release to the surface transporter AdcAII, leading to Zn(2+) uptake. |
doi_str_mv | 10.1371/journal.pone.0081168 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1462476244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7e7127325e36445c8227de1e79431605</doaj_id><sourcerecordid>1465863573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-39a6a7ecc4d055d8e9f29b8fb21752a14f7f857fd2f848af4038def4e0aa8993</originalsourceid><addsrcrecordid>eNptUk1vEzEUXCEQLYF_gMASFzgk-Gt3vRyQovLRSBEg0bvl2M-Jo429tb1FcOaH4zRp1VYcLD89z5vxG01VvSR4RlhL3m_DGL3qZ0PwMMNYENKIR9Up6RidNhSzx3fqk-pZSluMayaa5ml1QjkjlLbstPr7DX4h55Nbb3IqRQ5o41J2xnlAOTpl0BBDhgL5gFLox-yCRynHUecxAgoWKfQzRxhy0EHrMaHBw7gL3ilAPzb5EzJhp5xHyhv0x3ldWJVPFiIqWnOj54vF8-qJVX2CF8d7Ul18-Xxxdj5dfv-6OJsvp7pucJ6yTjWqBa25wXVtBHSWdithV5S0NVWE29aKurWGWsGFshwzYcBywEqJrmOT6vWBduhDkkf_kiS8obwthxfE4oAwQW3lEN1Oxd8yKCevGyGupYrZ6R5kCy0pDtIaWMN5rUXx0wCBtiveNsXpSfXxqDaudmA0-LJ4f4_0_ot3G7kOV5IJTjvWFIJ3B4LNg7Hz-VLuexh3vClSV6Rg3x7FYrgcIWW5c0lD3ysPYbzesRYNq1tWoG8eQP_vBD-gdAwpRbC3PyBY7vN3MyX3-ZPH_JWxV3eXvh26CRz7B3jd2ao</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462476244</pqid></control><display><type>article</type><title>New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII</title><source>DOAJ, Directory of Open Access Journals</source><source>PubMed Central (Open Access)</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Bersch, Beate ; Bougault, Catherine ; Roux, Laure ; Favier, Adrien ; Vernet, Thierry ; Durmort, Claire</creator><creatorcontrib>Bersch, Beate ; Bougault, Catherine ; Roux, Laure ; Favier, Adrien ; Vernet, Thierry ; Durmort, Claire</creatorcontrib><description>Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+) transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae) demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn(2+) transfer from the Zn(2+)-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD) to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn(2+) is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn(2+)-t-PhtD shows that the loss of Zn(2+) leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three β-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn(2+) scavenger for later release to the surface transporter AdcAII, leading to Zn(2+) uptake.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0081168</identifier><identifier>PMID: 24312273</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Amino Acid Sequence ; Amino acids ; Apoproteins - metabolism ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding Sites ; Biochemistry, Molecular Biology ; Biological Transport ; C-Terminus ; Carrier Proteins - metabolism ; Colonization ; Crystal structure ; E coli ; Escherichia coli ; Histidine ; Homeostasis ; Hydrolases - chemistry ; Hydrolases - metabolism ; Irritable bowel syndrome ; Life Sciences ; Membranes ; Metals ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; NMR ; Nuclear magnetic resonance ; Oxidative stress ; Polyhistidine ; Protein Structure, Secondary ; Proteins ; Salmonella ; Solutions ; Streptococcus infections ; Streptococcus pneumoniae ; Streptococcus pneumoniae - metabolism ; Streptococcus pyogenes ; Structural Biology ; Zinc ; Zinc - metabolism</subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e81168-e81168</ispartof><rights>2013 Bersch et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2013 Bersch et al 2013 Bersch et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-39a6a7ecc4d055d8e9f29b8fb21752a14f7f857fd2f848af4038def4e0aa8993</citedby><cites>FETCH-LOGICAL-c560t-39a6a7ecc4d055d8e9f29b8fb21752a14f7f857fd2f848af4038def4e0aa8993</cites><orcidid>0000-0003-1138-4911 ; 0000-0003-2511-2300</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842936/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842936/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24312273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00946605$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bersch, Beate</creatorcontrib><creatorcontrib>Bougault, Catherine</creatorcontrib><creatorcontrib>Roux, Laure</creatorcontrib><creatorcontrib>Favier, Adrien</creatorcontrib><creatorcontrib>Vernet, Thierry</creatorcontrib><creatorcontrib>Durmort, Claire</creatorcontrib><title>New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+) transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae) demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn(2+) transfer from the Zn(2+)-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD) to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn(2+) is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn(2+)-t-PhtD shows that the loss of Zn(2+) leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three β-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn(2+) scavenger for later release to the surface transporter AdcAII, leading to Zn(2+) uptake.</description><subject>Acids</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Apoproteins - metabolism</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological Transport</subject><subject>C-Terminus</subject><subject>Carrier Proteins - metabolism</subject><subject>Colonization</subject><subject>Crystal structure</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Histidine</subject><subject>Homeostasis</subject><subject>Hydrolases - chemistry</subject><subject>Hydrolases - metabolism</subject><subject>Irritable bowel syndrome</subject><subject>Life Sciences</subject><subject>Membranes</subject><subject>Metals</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Oxidative stress</subject><subject>Polyhistidine</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Salmonella</subject><subject>Solutions</subject><subject>Streptococcus infections</subject><subject>Streptococcus pneumoniae</subject><subject>Streptococcus pneumoniae - metabolism</subject><subject>Streptococcus pyogenes</subject><subject>Structural Biology</subject><subject>Zinc</subject><subject>Zinc - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEUXCEQLYF_gMASFzgk-Gt3vRyQovLRSBEg0bvl2M-Jo429tb1FcOaH4zRp1VYcLD89z5vxG01VvSR4RlhL3m_DGL3qZ0PwMMNYENKIR9Up6RidNhSzx3fqk-pZSluMayaa5ml1QjkjlLbstPr7DX4h55Nbb3IqRQ5o41J2xnlAOTpl0BBDhgL5gFLox-yCRynHUecxAgoWKfQzRxhy0EHrMaHBw7gL3ilAPzb5EzJhp5xHyhv0x3ldWJVPFiIqWnOj54vF8-qJVX2CF8d7Ul18-Xxxdj5dfv-6OJsvp7pucJ6yTjWqBa25wXVtBHSWdithV5S0NVWE29aKurWGWsGFshwzYcBywEqJrmOT6vWBduhDkkf_kiS8obwthxfE4oAwQW3lEN1Oxd8yKCevGyGupYrZ6R5kCy0pDtIaWMN5rUXx0wCBtiveNsXpSfXxqDaudmA0-LJ4f4_0_ot3G7kOV5IJTjvWFIJ3B4LNg7Hz-VLuexh3vClSV6Rg3x7FYrgcIWW5c0lD3ysPYbzesRYNq1tWoG8eQP_vBD-gdAwpRbC3PyBY7vN3MyX3-ZPH_JWxV3eXvh26CRz7B3jd2ao</recordid><startdate>20131128</startdate><enddate>20131128</enddate><creator>Bersch, Beate</creator><creator>Bougault, Catherine</creator><creator>Roux, Laure</creator><creator>Favier, Adrien</creator><creator>Vernet, Thierry</creator><creator>Durmort, Claire</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1138-4911</orcidid><orcidid>https://orcid.org/0000-0003-2511-2300</orcidid></search><sort><creationdate>20131128</creationdate><title>New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII</title><author>Bersch, Beate ; Bougault, Catherine ; Roux, Laure ; Favier, Adrien ; Vernet, Thierry ; Durmort, Claire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-39a6a7ecc4d055d8e9f29b8fb21752a14f7f857fd2f848af4038def4e0aa8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Apoproteins - metabolism</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological Transport</topic><topic>C-Terminus</topic><topic>Carrier Proteins - metabolism</topic><topic>Colonization</topic><topic>Crystal structure</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Histidine</topic><topic>Homeostasis</topic><topic>Hydrolases - chemistry</topic><topic>Hydrolases - metabolism</topic><topic>Irritable bowel syndrome</topic><topic>Life Sciences</topic><topic>Membranes</topic><topic>Metals</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Oxidative stress</topic><topic>Polyhistidine</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Salmonella</topic><topic>Solutions</topic><topic>Streptococcus infections</topic><topic>Streptococcus pneumoniae</topic><topic>Streptococcus pneumoniae - metabolism</topic><topic>Streptococcus pyogenes</topic><topic>Structural Biology</topic><topic>Zinc</topic><topic>Zinc - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bersch, Beate</creatorcontrib><creatorcontrib>Bougault, Catherine</creatorcontrib><creatorcontrib>Roux, Laure</creatorcontrib><creatorcontrib>Favier, Adrien</creatorcontrib><creatorcontrib>Vernet, Thierry</creatorcontrib><creatorcontrib>Durmort, Claire</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ, Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bersch, Beate</au><au>Bougault, Catherine</au><au>Roux, Laure</au><au>Favier, Adrien</au><au>Vernet, Thierry</au><au>Durmort, Claire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-28</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e81168</spage><epage>e81168</epage><pages>e81168-e81168</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Zinc (Zn(2+)) homeostasis is critical for pathogen host colonization and invasion. Polyhistidine triad (Pht) proteins, located at the surface of various streptococci, have been proposed to be involved in Zn(2+) homeostasis. The phtD gene, coding for a Zn(2+)-binding protein, is organized in an operon with adcAII coding for the extracellular part of a Zn(2+) transporter. In the present work, we investigate the relationship between PhtD and AdcAII using biochemical and structural biology approaches. Immuno-precipitation experiments on purified membranes of Streptococcus pneumoniae (S. pneumoniae) demonstrate that native PhtD and AdcAII interact in vivo confirming our previous in vitro observations. NMR was used to demonstrate Zn(2+) transfer from the Zn(2+)-bound form of a 137 amino acid N-terminal domain of PhtD (t-PhtD) to AdcAII. The high resolution NMR structure of t-PhtD shows that Zn(2+) is bound in a tetrahedral site by histidines 83, 86, and 88 as well as by glutamate 63. Comparison of the NMR parameters measured for apo- and Zn(2+)-t-PhtD shows that the loss of Zn(2+) leads to a diminished helical propensity at the C-terminus and increases the local dynamics and overall molecular volume. Structural comparison with the crystal structure of a 55-long fragment of PhtA suggests that Pht proteins are built from short repetitive units formed by three β-strands containing the conserved HxxHxH motif. Taken together, these results support a role for S. pneumoniae PhtD as a Zn(2+) scavenger for later release to the surface transporter AdcAII, leading to Zn(2+) uptake.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24312273</pmid><doi>10.1371/journal.pone.0081168</doi><orcidid>https://orcid.org/0000-0003-1138-4911</orcidid><orcidid>https://orcid.org/0000-0003-2511-2300</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-11, Vol.8 (11), p.e81168-e81168 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1462476244 |
source | DOAJ, Directory of Open Access Journals; PubMed Central (Open Access); Public Library of Science (PLoS) Journals Open Access; MEDLINE; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Acids Amino Acid Sequence Amino acids Apoproteins - metabolism Bacteria Bacterial Proteins - chemistry Bacterial Proteins - metabolism Binding Sites Biochemistry, Molecular Biology Biological Transport C-Terminus Carrier Proteins - metabolism Colonization Crystal structure E coli Escherichia coli Histidine Homeostasis Hydrolases - chemistry Hydrolases - metabolism Irritable bowel syndrome Life Sciences Membranes Metals Models, Molecular Molecular biology Molecular Sequence Data NMR Nuclear magnetic resonance Oxidative stress Polyhistidine Protein Structure, Secondary Proteins Salmonella Solutions Streptococcus infections Streptococcus pneumoniae Streptococcus pneumoniae - metabolism Streptococcus pyogenes Structural Biology Zinc Zinc - metabolism |
title | New insights into histidine triad proteins: solution structure of a Streptococcus pneumoniae PhtD domain and zinc transfer to AdcAII |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20insights%20into%20histidine%20triad%20proteins:%20solution%20structure%20of%20a%20Streptococcus%20pneumoniae%20PhtD%20domain%20and%20zinc%20transfer%20to%20AdcAII&rft.jtitle=PloS%20one&rft.au=Bersch,%20Beate&rft.date=2013-11-28&rft.volume=8&rft.issue=11&rft.spage=e81168&rft.epage=e81168&rft.pages=e81168-e81168&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0081168&rft_dat=%3Cproquest_plos_%3E1465863573%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462476244&rft_id=info:pmid/24312273&rft_doaj_id=oai_doaj_org_article_7e7127325e36445c8227de1e79431605&rfr_iscdi=true |