Meleagrin, a new FabI inhibitor from Penicillium chryosogenum with at least one additional mode of action

Bacterial enoyl-acyl carrier protein reductase (FabI) is a promising novel antibacterial target. We isolated a new class of FabI inhibitor from Penicillium chrysogenum, which produces various antibiotics, the mechanisms of some of them are unknown. The isolated FabI inhibitor was determined to be me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-11, Vol.8 (11), p.e78922-e78922
Hauptverfasser: Zheng, Chang Ji, Sohn, Mi-Jin, Lee, Sangku, Kim, Won-Gon
Format: Artikel
Sprache:eng
Schlagworte:
NMR
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bacterial enoyl-acyl carrier protein reductase (FabI) is a promising novel antibacterial target. We isolated a new class of FabI inhibitor from Penicillium chrysogenum, which produces various antibiotics, the mechanisms of some of them are unknown. The isolated FabI inhibitor was determined to be meleagrin by mass spectroscopy and nuclear magnetic resonance spectral analyses, and its more active and inactive derivatives were chemically prepared. Consistent with their selective inhibition of Staphylococcus aureus FabI, meleagrin and its more active derivatives directly bound to S. aureus FabI in a fluorescence quenching assay, inhibited intracellular fatty acid biosynthesis and growth of S. aureus, and increased the minimum inhibitory concentration for fabI-overexpressing S. aureus. The compounds that were not effective against the FabK isoform, however, inhibited the growth of Streptococcus pneumoniae that contained only the FabK isoform. Additionally no resistant mutant to the compounds was obtained. Importantly, fabK-overexpressing Escherichia coli was not resistant to these compounds, but was resistant to triclosan. These results demonstrate that the compounds inhibited another target in addition to FabI. Thus, meleagrin is a new class of FabI inhibitor with at least one additional mode of action that could have potential for treating multidrug-resistant bacteria.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0078922