Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis

Salvia miltiorrhiza Bunge, a perennial plant of Lamiaceae, accumulates abietane-type diterpenoids of tanshinones in root, which have been used as traditional Chinese medicine to treat neuroasthenic insomnia and cardiovascular diseases. However, to date the biosynthetic pathway of tanshinones is only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-11, Vol.8 (11), p.e80464-e80464
Hauptverfasser: Yang, Lei, Ding, Guohui, Lin, Haiyan, Cheng, Haining, Kong, Yu, Wei, Yukun, Fang, Xin, Liu, Renyi, Wang, Lingiian, Chen, Xiaoya, Yang, Changqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e80464
container_issue 11
container_start_page e80464
container_title PloS one
container_volume 8
creator Yang, Lei
Ding, Guohui
Lin, Haiyan
Cheng, Haining
Kong, Yu
Wei, Yukun
Fang, Xin
Liu, Renyi
Wang, Lingiian
Chen, Xiaoya
Yang, Changqing
description Salvia miltiorrhiza Bunge, a perennial plant of Lamiaceae, accumulates abietane-type diterpenoids of tanshinones in root, which have been used as traditional Chinese medicine to treat neuroasthenic insomnia and cardiovascular diseases. However, to date the biosynthetic pathway of tanshinones is only partially elucidated and the mechanism for their root-specific accumulation remains unknown. To identify enzymes and transcriptional regulators involved in the biosynthesis of tanshinones, we conducted transcriptome profiling of S. miltiorrhiza root and leaf tissues using the 454 GS-FLX pyrosequencing platform, which generated 550,546 and 525,292 reads, respectively. RNA sequencing reads were assembled and clustered into 64,139 unigenes (29,883 isotigs and 34,256 singletons). NCBI non-redundant protein databases (NR) and Swiss-Prot database searches anchored 32,096 unigenes (50%) with functional annotations based on sequence similarities. Further assignments with Gene Ontology (GO) terms and KEGG biochemical pathways identified 168 unigenes referring to the terpenoid backbone biosynthesis (including 144 MEP and MVA pathway genes and 24 terpene synthases). Comparative analysis of the transcriptomes identified 2,863 unigenes that were highly expressed in roots, including those encoding enzymes of early steps of tanshinone biosynthetic pathway, such as copalyl diphosphate synthase (SmCPS), kaurene synthase-like (SmKSL) and CYP76AH1. Other differentially expressed unigenes predicted to be related to tanshinone biosynthesis fall into cytochrome P450 monooxygenases, dehydrogenases and reductases, as well as regulatory factors. In addition, 21 P450 genes were selectively confirmed by real-time PCR. Thus we have generated a large unigene dataset which provides a valuable resource for further investigation of the radix development and biosynthesis of tanshinones.
doi_str_mv 10.1371/journal.pone.0080464
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1459680133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478207499</galeid><doaj_id>oai_doaj_org_article_387bfde835f748e9a1178af774a41d0e</doaj_id><sourcerecordid>A478207499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-30ce6f0659d7933fcbe438bd299b41186da0239d7d011850fce7d3041a5435ce3</originalsourceid><addsrcrecordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MWOna8LUlXxsVKlSrRwtRx7svHKG29tp6KIH8-ETasN6gHlkHj8zPvaM5kkeUnJkrKSfti4wffSLneuhyUhFeEFf5Qc05pliyIj7PHB91HyLIQNITmriuJpcpTxrCCszo-T31de9kF5s4tuC6lExdtgQuradAvaKIOBdGdlH9NLaW-MTLfGRuO878wvibxOjYY-mtYoifF-zFxDDyH1YGUEnUaXRvToTI8nTRvjwm0fO0CX58mTVtoAL6b3SfL986ers6-L84svq7PT84Uq6iwuGFFQtKTIa13WjLWqAc6qRmd13XBKq0JLkjHc1ARXOWkVlJoRTmXOWa6AnSSv97o764KYChcE5XldVIQyhsRqT2gnN2LnzVb6W-GkEX8Dzq-F9NEoC4JVZdNqqFjelryCWlJaVrItSy451WR0-zi5DQ3WUGF1vLQz0flObzqxdjeozDgpcxR4Nwl4dz1AiGJrggKLXQA3jOcuaIXe2Yi--Qd9-HYTtZZ4AdO3Dn3VKCpOeVllpOR1jdTyAQofDVujsHetwfgs4f0sAZkIP-NaDiGI1eW3_2cvfszZtwdsB9LGLjg7jL9XmIN8DyrvQvDQ3heZEjEOyV01xDgkYhoSTHt12KD7pLupYH8AyLIOrQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459680133</pqid></control><display><type>article</type><title>Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yang, Lei ; Ding, Guohui ; Lin, Haiyan ; Cheng, Haining ; Kong, Yu ; Wei, Yukun ; Fang, Xin ; Liu, Renyi ; Wang, Lingiian ; Chen, Xiaoya ; Yang, Changqing</creator><contributor>Neilan, Brett</contributor><creatorcontrib>Yang, Lei ; Ding, Guohui ; Lin, Haiyan ; Cheng, Haining ; Kong, Yu ; Wei, Yukun ; Fang, Xin ; Liu, Renyi ; Wang, Lingiian ; Chen, Xiaoya ; Yang, Changqing ; Neilan, Brett</creatorcontrib><description>Salvia miltiorrhiza Bunge, a perennial plant of Lamiaceae, accumulates abietane-type diterpenoids of tanshinones in root, which have been used as traditional Chinese medicine to treat neuroasthenic insomnia and cardiovascular diseases. However, to date the biosynthetic pathway of tanshinones is only partially elucidated and the mechanism for their root-specific accumulation remains unknown. To identify enzymes and transcriptional regulators involved in the biosynthesis of tanshinones, we conducted transcriptome profiling of S. miltiorrhiza root and leaf tissues using the 454 GS-FLX pyrosequencing platform, which generated 550,546 and 525,292 reads, respectively. RNA sequencing reads were assembled and clustered into 64,139 unigenes (29,883 isotigs and 34,256 singletons). NCBI non-redundant protein databases (NR) and Swiss-Prot database searches anchored 32,096 unigenes (50%) with functional annotations based on sequence similarities. Further assignments with Gene Ontology (GO) terms and KEGG biochemical pathways identified 168 unigenes referring to the terpenoid backbone biosynthesis (including 144 MEP and MVA pathway genes and 24 terpene synthases). Comparative analysis of the transcriptomes identified 2,863 unigenes that were highly expressed in roots, including those encoding enzymes of early steps of tanshinone biosynthetic pathway, such as copalyl diphosphate synthase (SmCPS), kaurene synthase-like (SmKSL) and CYP76AH1. Other differentially expressed unigenes predicted to be related to tanshinone biosynthesis fall into cytochrome P450 monooxygenases, dehydrogenases and reductases, as well as regulatory factors. In addition, 21 P450 genes were selectively confirmed by real-time PCR. Thus we have generated a large unigene dataset which provides a valuable resource for further investigation of the radix development and biosynthesis of tanshinones.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0080464</identifier><identifier>PMID: 24260395</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Alkyl and Aryl Transferases - metabolism ; Analysis ; Annotations ; Bioinformatics ; Biology ; Biosynthesis ; Biosynthetic Pathways ; Cardiovascular diseases ; Cell cycle ; Cell division ; Comparative analysis ; Computational Biology - methods ; Computer programs ; Cytochrome ; Cytochrome P-450 Enzyme System - genetics ; Cytochrome P450 ; Diterpenes ; Diterpenes, Abietane - biosynthesis ; Enzymes ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Gene sequencing ; Genes ; Genomes ; Genomics ; Heart diseases ; Herbal medicine ; High-Throughput Nucleotide Sequencing ; Insomnia ; Kinases ; Laboratories ; Medicinal plants ; Mevalonate pathway ; Molecular Sequence Data ; Natural products ; Online searching ; Oxidoreductases ; Phylogeny ; Physiological aspects ; Physiology ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant Roots - genetics ; Plant Roots - metabolism ; Plant sciences ; Plant tissues ; Plants, Medicinal - genetics ; Plants, Medicinal - metabolism ; Reductases ; Regulators ; Ribonucleic acid ; RNA ; RNA sequencing ; Salvia miltiorrhiza ; Salvia miltiorrhiza - classification ; Salvia miltiorrhiza - genetics ; Salvia miltiorrhiza - metabolism ; Sleep disorders ; Tanshinones ; Terpenes - metabolism ; Traditional Chinese medicine ; Transcription ; Transcription factors ; Transcription Factors - metabolism ; Transcriptome</subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e80464-e80464</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/3.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Yang et al 2013 Yang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-30ce6f0659d7933fcbe438bd299b41186da0239d7d011850fce7d3041a5435ce3</citedby><cites>FETCH-LOGICAL-c692t-30ce6f0659d7933fcbe438bd299b41186da0239d7d011850fce7d3041a5435ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834075/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3834075/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24260395$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Neilan, Brett</contributor><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Ding, Guohui</creatorcontrib><creatorcontrib>Lin, Haiyan</creatorcontrib><creatorcontrib>Cheng, Haining</creatorcontrib><creatorcontrib>Kong, Yu</creatorcontrib><creatorcontrib>Wei, Yukun</creatorcontrib><creatorcontrib>Fang, Xin</creatorcontrib><creatorcontrib>Liu, Renyi</creatorcontrib><creatorcontrib>Wang, Lingiian</creatorcontrib><creatorcontrib>Chen, Xiaoya</creatorcontrib><creatorcontrib>Yang, Changqing</creatorcontrib><title>Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Salvia miltiorrhiza Bunge, a perennial plant of Lamiaceae, accumulates abietane-type diterpenoids of tanshinones in root, which have been used as traditional Chinese medicine to treat neuroasthenic insomnia and cardiovascular diseases. However, to date the biosynthetic pathway of tanshinones is only partially elucidated and the mechanism for their root-specific accumulation remains unknown. To identify enzymes and transcriptional regulators involved in the biosynthesis of tanshinones, we conducted transcriptome profiling of S. miltiorrhiza root and leaf tissues using the 454 GS-FLX pyrosequencing platform, which generated 550,546 and 525,292 reads, respectively. RNA sequencing reads were assembled and clustered into 64,139 unigenes (29,883 isotigs and 34,256 singletons). NCBI non-redundant protein databases (NR) and Swiss-Prot database searches anchored 32,096 unigenes (50%) with functional annotations based on sequence similarities. Further assignments with Gene Ontology (GO) terms and KEGG biochemical pathways identified 168 unigenes referring to the terpenoid backbone biosynthesis (including 144 MEP and MVA pathway genes and 24 terpene synthases). Comparative analysis of the transcriptomes identified 2,863 unigenes that were highly expressed in roots, including those encoding enzymes of early steps of tanshinone biosynthetic pathway, such as copalyl diphosphate synthase (SmCPS), kaurene synthase-like (SmKSL) and CYP76AH1. Other differentially expressed unigenes predicted to be related to tanshinone biosynthesis fall into cytochrome P450 monooxygenases, dehydrogenases and reductases, as well as regulatory factors. In addition, 21 P450 genes were selectively confirmed by real-time PCR. Thus we have generated a large unigene dataset which provides a valuable resource for further investigation of the radix development and biosynthesis of tanshinones.</description><subject>Acids</subject><subject>Alkyl and Aryl Transferases - metabolism</subject><subject>Analysis</subject><subject>Annotations</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biosynthesis</subject><subject>Biosynthetic Pathways</subject><subject>Cardiovascular diseases</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Comparative analysis</subject><subject>Computational Biology - methods</subject><subject>Computer programs</subject><subject>Cytochrome</subject><subject>Cytochrome P-450 Enzyme System - genetics</subject><subject>Cytochrome P450</subject><subject>Diterpenes</subject><subject>Diterpenes, Abietane - biosynthesis</subject><subject>Enzymes</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Heart diseases</subject><subject>Herbal medicine</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Insomnia</subject><subject>Kinases</subject><subject>Laboratories</subject><subject>Medicinal plants</subject><subject>Mevalonate pathway</subject><subject>Molecular Sequence Data</subject><subject>Natural products</subject><subject>Online searching</subject><subject>Oxidoreductases</subject><subject>Phylogeny</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Roots - genetics</subject><subject>Plant Roots - metabolism</subject><subject>Plant sciences</subject><subject>Plant tissues</subject><subject>Plants, Medicinal - genetics</subject><subject>Plants, Medicinal - metabolism</subject><subject>Reductases</subject><subject>Regulators</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA sequencing</subject><subject>Salvia miltiorrhiza</subject><subject>Salvia miltiorrhiza - classification</subject><subject>Salvia miltiorrhiza - genetics</subject><subject>Salvia miltiorrhiza - metabolism</subject><subject>Sleep disorders</subject><subject>Tanshinones</subject><subject>Terpenes - metabolism</subject><subject>Traditional Chinese medicine</subject><subject>Transcription</subject><subject>Transcription factors</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptome</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk01v1DAQhiMEoqXwDxBEQkJw2MWOna8LUlXxsVKlSrRwtRx7svHKG29tp6KIH8-ETasN6gHlkHj8zPvaM5kkeUnJkrKSfti4wffSLneuhyUhFeEFf5Qc05pliyIj7PHB91HyLIQNITmriuJpcpTxrCCszo-T31de9kF5s4tuC6lExdtgQuradAvaKIOBdGdlH9NLaW-MTLfGRuO878wvibxOjYY-mtYoifF-zFxDDyH1YGUEnUaXRvToTI8nTRvjwm0fO0CX58mTVtoAL6b3SfL986ers6-L84svq7PT84Uq6iwuGFFQtKTIa13WjLWqAc6qRmd13XBKq0JLkjHc1ARXOWkVlJoRTmXOWa6AnSSv97o764KYChcE5XldVIQyhsRqT2gnN2LnzVb6W-GkEX8Dzq-F9NEoC4JVZdNqqFjelryCWlJaVrItSy451WR0-zi5DQ3WUGF1vLQz0flObzqxdjeozDgpcxR4Nwl4dz1AiGJrggKLXQA3jOcuaIXe2Yi--Qd9-HYTtZZ4AdO3Dn3VKCpOeVllpOR1jdTyAQofDVujsHetwfgs4f0sAZkIP-NaDiGI1eW3_2cvfszZtwdsB9LGLjg7jL9XmIN8DyrvQvDQ3heZEjEOyV01xDgkYhoSTHt12KD7pLupYH8AyLIOrQ</recordid><startdate>20131119</startdate><enddate>20131119</enddate><creator>Yang, Lei</creator><creator>Ding, Guohui</creator><creator>Lin, Haiyan</creator><creator>Cheng, Haining</creator><creator>Kong, Yu</creator><creator>Wei, Yukun</creator><creator>Fang, Xin</creator><creator>Liu, Renyi</creator><creator>Wang, Lingiian</creator><creator>Chen, Xiaoya</creator><creator>Yang, Changqing</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131119</creationdate><title>Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis</title><author>Yang, Lei ; Ding, Guohui ; Lin, Haiyan ; Cheng, Haining ; Kong, Yu ; Wei, Yukun ; Fang, Xin ; Liu, Renyi ; Wang, Lingiian ; Chen, Xiaoya ; Yang, Changqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-30ce6f0659d7933fcbe438bd299b41186da0239d7d011850fce7d3041a5435ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acids</topic><topic>Alkyl and Aryl Transferases - metabolism</topic><topic>Analysis</topic><topic>Annotations</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biosynthesis</topic><topic>Biosynthetic Pathways</topic><topic>Cardiovascular diseases</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Comparative analysis</topic><topic>Computational Biology - methods</topic><topic>Computer programs</topic><topic>Cytochrome</topic><topic>Cytochrome P-450 Enzyme System - genetics</topic><topic>Cytochrome P450</topic><topic>Diterpenes</topic><topic>Diterpenes, Abietane - biosynthesis</topic><topic>Enzymes</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Heart diseases</topic><topic>Herbal medicine</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Insomnia</topic><topic>Kinases</topic><topic>Laboratories</topic><topic>Medicinal plants</topic><topic>Mevalonate pathway</topic><topic>Molecular Sequence Data</topic><topic>Natural products</topic><topic>Online searching</topic><topic>Oxidoreductases</topic><topic>Phylogeny</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Roots - genetics</topic><topic>Plant Roots - metabolism</topic><topic>Plant sciences</topic><topic>Plant tissues</topic><topic>Plants, Medicinal - genetics</topic><topic>Plants, Medicinal - metabolism</topic><topic>Reductases</topic><topic>Regulators</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA sequencing</topic><topic>Salvia miltiorrhiza</topic><topic>Salvia miltiorrhiza - classification</topic><topic>Salvia miltiorrhiza - genetics</topic><topic>Salvia miltiorrhiza - metabolism</topic><topic>Sleep disorders</topic><topic>Tanshinones</topic><topic>Terpenes - metabolism</topic><topic>Traditional Chinese medicine</topic><topic>Transcription</topic><topic>Transcription factors</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Lei</creatorcontrib><creatorcontrib>Ding, Guohui</creatorcontrib><creatorcontrib>Lin, Haiyan</creatorcontrib><creatorcontrib>Cheng, Haining</creatorcontrib><creatorcontrib>Kong, Yu</creatorcontrib><creatorcontrib>Wei, Yukun</creatorcontrib><creatorcontrib>Fang, Xin</creatorcontrib><creatorcontrib>Liu, Renyi</creatorcontrib><creatorcontrib>Wang, Lingiian</creatorcontrib><creatorcontrib>Chen, Xiaoya</creatorcontrib><creatorcontrib>Yang, Changqing</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing &amp; Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Lei</au><au>Ding, Guohui</au><au>Lin, Haiyan</au><au>Cheng, Haining</au><au>Kong, Yu</au><au>Wei, Yukun</au><au>Fang, Xin</au><au>Liu, Renyi</au><au>Wang, Lingiian</au><au>Chen, Xiaoya</au><au>Yang, Changqing</au><au>Neilan, Brett</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-19</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e80464</spage><epage>e80464</epage><pages>e80464-e80464</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Salvia miltiorrhiza Bunge, a perennial plant of Lamiaceae, accumulates abietane-type diterpenoids of tanshinones in root, which have been used as traditional Chinese medicine to treat neuroasthenic insomnia and cardiovascular diseases. However, to date the biosynthetic pathway of tanshinones is only partially elucidated and the mechanism for their root-specific accumulation remains unknown. To identify enzymes and transcriptional regulators involved in the biosynthesis of tanshinones, we conducted transcriptome profiling of S. miltiorrhiza root and leaf tissues using the 454 GS-FLX pyrosequencing platform, which generated 550,546 and 525,292 reads, respectively. RNA sequencing reads were assembled and clustered into 64,139 unigenes (29,883 isotigs and 34,256 singletons). NCBI non-redundant protein databases (NR) and Swiss-Prot database searches anchored 32,096 unigenes (50%) with functional annotations based on sequence similarities. Further assignments with Gene Ontology (GO) terms and KEGG biochemical pathways identified 168 unigenes referring to the terpenoid backbone biosynthesis (including 144 MEP and MVA pathway genes and 24 terpene synthases). Comparative analysis of the transcriptomes identified 2,863 unigenes that were highly expressed in roots, including those encoding enzymes of early steps of tanshinone biosynthetic pathway, such as copalyl diphosphate synthase (SmCPS), kaurene synthase-like (SmKSL) and CYP76AH1. Other differentially expressed unigenes predicted to be related to tanshinone biosynthesis fall into cytochrome P450 monooxygenases, dehydrogenases and reductases, as well as regulatory factors. In addition, 21 P450 genes were selectively confirmed by real-time PCR. Thus we have generated a large unigene dataset which provides a valuable resource for further investigation of the radix development and biosynthesis of tanshinones.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24260395</pmid><doi>10.1371/journal.pone.0080464</doi><tpages>e80464</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-11, Vol.8 (11), p.e80464-e80464
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1459680133
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acids
Alkyl and Aryl Transferases - metabolism
Analysis
Annotations
Bioinformatics
Biology
Biosynthesis
Biosynthetic Pathways
Cardiovascular diseases
Cell cycle
Cell division
Comparative analysis
Computational Biology - methods
Computer programs
Cytochrome
Cytochrome P-450 Enzyme System - genetics
Cytochrome P450
Diterpenes
Diterpenes, Abietane - biosynthesis
Enzymes
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Plant
Gene sequencing
Genes
Genomes
Genomics
Heart diseases
Herbal medicine
High-Throughput Nucleotide Sequencing
Insomnia
Kinases
Laboratories
Medicinal plants
Mevalonate pathway
Molecular Sequence Data
Natural products
Online searching
Oxidoreductases
Phylogeny
Physiological aspects
Physiology
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Roots - genetics
Plant Roots - metabolism
Plant sciences
Plant tissues
Plants, Medicinal - genetics
Plants, Medicinal - metabolism
Reductases
Regulators
Ribonucleic acid
RNA
RNA sequencing
Salvia miltiorrhiza
Salvia miltiorrhiza - classification
Salvia miltiorrhiza - genetics
Salvia miltiorrhiza - metabolism
Sleep disorders
Tanshinones
Terpenes - metabolism
Traditional Chinese medicine
Transcription
Transcription factors
Transcription Factors - metabolism
Transcriptome
title Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A27%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transcriptome%20analysis%20of%20medicinal%20plant%20Salvia%20miltiorrhiza%20and%20identification%20of%20genes%20related%20to%20tanshinone%20biosynthesis&rft.jtitle=PloS%20one&rft.au=Yang,%20Lei&rft.date=2013-11-19&rft.volume=8&rft.issue=11&rft.spage=e80464&rft.epage=e80464&rft.pages=e80464-e80464&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0080464&rft_dat=%3Cgale_plos_%3EA478207499%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459680133&rft_id=info:pmid/24260395&rft_galeid=A478207499&rft_doaj_id=oai_doaj_org_article_387bfde835f748e9a1178af774a41d0e&rfr_iscdi=true