The influence of synaptic weight distribution on neuronal population dynamics
The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast se...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2013-10, Vol.9 (10), p.e1003248-e1003248 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003248 |
---|---|
container_issue | 10 |
container_start_page | e1003248 |
container_title | PLoS computational biology |
container_volume | 9 |
creator | Iyer, Ramakrishnan Menon, Vilas Buice, Michael Koch, Christof Mihalas, Stefan |
description | The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations. |
doi_str_mv | 10.1371/journal.pcbi.1003248 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1458892378</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A351435951</galeid><doaj_id>oai_doaj_org_article_7804ba7fc2c44fadb56d3609e4765000</doaj_id><sourcerecordid>A351435951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-db18c2395f7a18a653146fb2472fa04149330ad290b4ee2c546bc02926e848b03</originalsourceid><addsrcrecordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXfwxTuwLUlXxsVIBCcrZsh1716tsHOwE6L_H6aZVI3FBjuRo8rzvTGamKJ5jtMa0xm_3YYydate90X6NEaIE-IPiFDNGVzVl_OG995PiSUr7zDAuqsfFCQGCgGBxWny-2tnSd64dbWdsGVyZrjvVD96Uv63f7oay8WmIXo-DD12Zn86OMeTEZR_6sVU34SZrDt6kp8Ujp9pkn833WfHjw_uri0-ry68fNxfnlytTUTqsGo25IVQwVyvMVcUohsppAjVxCgEGQSlSDRFIg7XEMKi0QUSQynLgGtGz4uXRt29DknMnksTAOBeE1jwTmyPRBLWXffQHFa9lUF7eBELcShXzX7ZW1hyBVrUzxAA41WhWNbRCwkJdMYSmbO_mbKM-2MbYboiqXZguv3R-J7fhl6QccWA0G7yeDWL4Odo0yINPxrat6mwYp7pB1JUABBl9dUS3KpeWBxOyo5lweU4ZBsoEw5la_4PKp7F5DKGzzuf4QvBmIcjMYP8MWzWmJDffv_0H-2XJwpE1MaQUrbvrCkZyWtPb4chpTeW8pln24n5H70S3e0n_AkwN4vg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449769404</pqid></control><display><type>article</type><title>The influence of synaptic weight distribution on neuronal population dynamics</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed (Medline)</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Iyer, Ramakrishnan ; Menon, Vilas ; Buice, Michael ; Koch, Christof ; Mihalas, Stefan</creator><contributor>Sporns, Olaf</contributor><creatorcontrib>Iyer, Ramakrishnan ; Menon, Vilas ; Buice, Michael ; Koch, Christof ; Mihalas, Stefan ; Sporns, Olaf</creatorcontrib><description>The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1003248</identifier><identifier>PMID: 24204219</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action Potentials - physiology ; Algorithms ; Computer Simulation ; Experiments ; Methods ; Models, Neurological ; Nerve proteins ; Neural networks ; Neurons ; Neurons - physiology ; Neurophysiology ; Partial differential equations ; Physiological aspects ; Population ; Random variables ; Simulation ; Synapses - physiology</subject><ispartof>PLoS computational biology, 2013-10, Vol.9 (10), p.e1003248-e1003248</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Iyer et al 2013 Iyer et al</rights><rights>2013 Iyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Iyer R, Menon V, Buice M, Koch C, Mihalas S (2013) The Influence of Synaptic Weight Distribution on Neuronal Population Dynamics. PLoS Comput Biol 9(10): e1003248. doi:10.1371/journal.pcbi.1003248</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-db18c2395f7a18a653146fb2472fa04149330ad290b4ee2c546bc02926e848b03</citedby><cites>FETCH-LOGICAL-c633t-db18c2395f7a18a653146fb2472fa04149330ad290b4ee2c546bc02926e848b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808453/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3808453/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24204219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Sporns, Olaf</contributor><creatorcontrib>Iyer, Ramakrishnan</creatorcontrib><creatorcontrib>Menon, Vilas</creatorcontrib><creatorcontrib>Buice, Michael</creatorcontrib><creatorcontrib>Koch, Christof</creatorcontrib><creatorcontrib>Mihalas, Stefan</creatorcontrib><title>The influence of synaptic weight distribution on neuronal population dynamics</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations.</description><subject>Action Potentials - physiology</subject><subject>Algorithms</subject><subject>Computer Simulation</subject><subject>Experiments</subject><subject>Methods</subject><subject>Models, Neurological</subject><subject>Nerve proteins</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Neurons - physiology</subject><subject>Neurophysiology</subject><subject>Partial differential equations</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Random variables</subject><subject>Simulation</subject><subject>Synapses - physiology</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk1v1DAQhiMEoqXwDxBE4gKHXfwxTuwLUlXxsVIBCcrZsh1716tsHOwE6L_H6aZVI3FBjuRo8rzvTGamKJ5jtMa0xm_3YYydate90X6NEaIE-IPiFDNGVzVl_OG995PiSUr7zDAuqsfFCQGCgGBxWny-2tnSd64dbWdsGVyZrjvVD96Uv63f7oay8WmIXo-DD12Zn86OMeTEZR_6sVU34SZrDt6kp8Ujp9pkn833WfHjw_uri0-ry68fNxfnlytTUTqsGo25IVQwVyvMVcUohsppAjVxCgEGQSlSDRFIg7XEMKi0QUSQynLgGtGz4uXRt29DknMnksTAOBeE1jwTmyPRBLWXffQHFa9lUF7eBELcShXzX7ZW1hyBVrUzxAA41WhWNbRCwkJdMYSmbO_mbKM-2MbYboiqXZguv3R-J7fhl6QccWA0G7yeDWL4Odo0yINPxrat6mwYp7pB1JUABBl9dUS3KpeWBxOyo5lweU4ZBsoEw5la_4PKp7F5DKGzzuf4QvBmIcjMYP8MWzWmJDffv_0H-2XJwpE1MaQUrbvrCkZyWtPb4chpTeW8pln24n5H70S3e0n_AkwN4vg</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Iyer, Ramakrishnan</creator><creator>Menon, Vilas</creator><creator>Buice, Michael</creator><creator>Koch, Christof</creator><creator>Mihalas, Stefan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131001</creationdate><title>The influence of synaptic weight distribution on neuronal population dynamics</title><author>Iyer, Ramakrishnan ; Menon, Vilas ; Buice, Michael ; Koch, Christof ; Mihalas, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-db18c2395f7a18a653146fb2472fa04149330ad290b4ee2c546bc02926e848b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Action Potentials - physiology</topic><topic>Algorithms</topic><topic>Computer Simulation</topic><topic>Experiments</topic><topic>Methods</topic><topic>Models, Neurological</topic><topic>Nerve proteins</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Neurons - physiology</topic><topic>Neurophysiology</topic><topic>Partial differential equations</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Random variables</topic><topic>Simulation</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iyer, Ramakrishnan</creatorcontrib><creatorcontrib>Menon, Vilas</creatorcontrib><creatorcontrib>Buice, Michael</creatorcontrib><creatorcontrib>Koch, Christof</creatorcontrib><creatorcontrib>Mihalas, Stefan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iyer, Ramakrishnan</au><au>Menon, Vilas</au><au>Buice, Michael</au><au>Koch, Christof</au><au>Mihalas, Stefan</au><au>Sporns, Olaf</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of synaptic weight distribution on neuronal population dynamics</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>9</volume><issue>10</issue><spage>e1003248</spage><epage>e1003248</epage><pages>e1003248-e1003248</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>The manner in which different distributions of synaptic weights onto cortical neurons shape their spiking activity remains open. To characterize a homogeneous neuronal population, we use the master equation for generalized leaky integrate-and-fire neurons with shot-noise synapses. We develop fast semi-analytic numerical methods to solve this equation for either current or conductance synapses, with and without synaptic depression. We show that its solutions match simulations of equivalent neuronal networks better than those of the Fokker-Planck equation and we compute bounds on the network response to non-instantaneous synapses. We apply these methods to study different synaptic weight distributions in feed-forward networks. We characterize the synaptic amplitude distributions using a set of measures, called tail weight numbers, designed to quantify the preponderance of very strong synapses. Even if synaptic amplitude distributions are equated for both the total current and average synaptic weight, distributions with sparse but strong synapses produce higher responses for small inputs, leading to a larger operating range. Furthermore, despite their small number, such synapses enable the network to respond faster and with more stability in the face of external fluctuations.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24204219</pmid><doi>10.1371/journal.pcbi.1003248</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2013-10, Vol.9 (10), p.e1003248-e1003248 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_1458892378 |
source | Public Library of Science (PLoS) Journals Open Access; PubMed (Medline); MEDLINE; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | Action Potentials - physiology Algorithms Computer Simulation Experiments Methods Models, Neurological Nerve proteins Neural networks Neurons Neurons - physiology Neurophysiology Partial differential equations Physiological aspects Population Random variables Simulation Synapses - physiology |
title | The influence of synaptic weight distribution on neuronal population dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T21%3A22%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20synaptic%20weight%20distribution%20on%20neuronal%20population%20dynamics&rft.jtitle=PLoS%20computational%20biology&rft.au=Iyer,%20Ramakrishnan&rft.date=2013-10-01&rft.volume=9&rft.issue=10&rft.spage=e1003248&rft.epage=e1003248&rft.pages=e1003248-e1003248&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1003248&rft_dat=%3Cgale_plos_%3EA351435951%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449769404&rft_id=info:pmid/24204219&rft_galeid=A351435951&rft_doaj_id=oai_doaj_org_article_7804ba7fc2c44fadb56d3609e4765000&rfr_iscdi=true |