Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)
The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vac...
Gespeichert in:
Veröffentlicht in: | PLoS neglected tropical diseases 2013-10, Vol.7 (10), p.e2506-e2506 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2506 |
---|---|
container_issue | 10 |
container_start_page | e2506 |
container_title | PLoS neglected tropical diseases |
container_volume | 7 |
creator | Arnott, Alicia Mueller, Ivo Ramsland, Paul A Siba, Peter M Reeder, John C Barry, Alyssa E |
description | The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1.
New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines.
It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule. |
doi_str_mv | 10.1371/journal.pntd.0002506 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1458887741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A351263455</galeid><doaj_id>oai_doaj_org_article_96e241cd6f374afd9cfa57ca5a528ea0</doaj_id><sourcerecordid>A351263455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629t-3c2551fd7fcbbb7128849a6c7a0aa154167a503699c61f10d14306deafe99b6c3</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3HX1H4gOCLKCrcnka3IjlLKuC7tY8OM2nMlk2iyZpCYzRe_94abb7tKCF5KLhJPnvCfn5C2KlxhNMRH4w20Yowc3XfuhnSKEKob4o-IUS8ImlSDs8cH5pHiW0i1CTLIaPy1OKlohRrE8Lf5cutCAKxdhPToYbPDl1yGOehijKUNXDitTXhpvUnnhdWitX96FbsBBtFD-AK2tN-UcfGtbGMz7cuEg9Zkc-3JjN_CrnK2tzhVuTN9EyOzMD3ZpfInL88VmdjPD754XTzpwybzY72fF908X3-afJ9dfLq_ms-uJ5pUcJkRXjOGuFZ1umkbgqq6pBK4FIACc--ECGCJcSs1xh1GLKUG8NdAZKRuuyVnxeqe7diGp_QCTwpTVdS0ExZm42hFtgFu1jraH-FsFsOouEOJSQRysdkZJbiqKdcs7Iih0rdQdMKGBAatqAyhrfdxXG5vetNr4IYI7Ej2-8XallmGjSI0pRTwLnO8FYvg5mjSo3iZtnMtTDOP23bwmNSKi_g-USsElQiKjb3boEnIX1nchF9dbXM0IwxUnlLFMTf9B5dWa3urgTWdz_Cjh7UHCyoAbVim4cWupdAzSHahjSCma7mEiGKmts-8_Rm2drfbOzmmvDqf5kHRvZfIXqRj0_A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449769007</pqid></control><display><type>article</type><title>Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Arnott, Alicia ; Mueller, Ivo ; Ramsland, Paul A ; Siba, Peter M ; Reeder, John C ; Barry, Alyssa E</creator><creatorcontrib>Arnott, Alicia ; Mueller, Ivo ; Ramsland, Paul A ; Siba, Peter M ; Reeder, John C ; Barry, Alyssa E</creatorcontrib><description>The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1.
New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines.
It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0002506</identifier><identifier>PMID: 24205419</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Antigens, Protozoan - genetics ; Child ; Child, Preschool ; Cluster Analysis ; Composition ; Cross-Sectional Studies ; DNA, Protozoan - chemistry ; DNA, Protozoan - genetics ; Female ; Genes ; Genetic aspects ; Global Health ; Haplotypes ; Humans ; Infant ; Infant, Newborn ; Malaria ; Malaria, Vivax - parasitology ; Male ; Medical research ; Membrane Proteins - genetics ; Middle Aged ; Molecular Sequence Data ; Parasite antigens ; Phylogeography ; Plasmodium falciparum ; Plasmodium vivax ; Plasmodium vivax - genetics ; Plasmodium vivax - isolation & purification ; Polymorphism, Single Nucleotide ; Protozoan Proteins - genetics ; Sequence Analysis, DNA ; Testing ; Vaccines ; Viral vaccines ; Young Adult</subject><ispartof>PLoS neglected tropical diseases, 2013-10, Vol.7 (10), p.e2506-e2506</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Arnott et al 2013 Arnott et al</rights><rights>2013 Arnott et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Arnott A, Mueller I, Ramsland PA, Siba PM, Reeder JC, et al. (2013) Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1). PLoS Negl Trop Dis 7(10): e2506. doi:10.1371/journal.pntd.0002506</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c629t-3c2551fd7fcbbb7128849a6c7a0aa154167a503699c61f10d14306deafe99b6c3</citedby><cites>FETCH-LOGICAL-c629t-3c2551fd7fcbbb7128849a6c7a0aa154167a503699c61f10d14306deafe99b6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814406/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814406/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24205419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnott, Alicia</creatorcontrib><creatorcontrib>Mueller, Ivo</creatorcontrib><creatorcontrib>Ramsland, Paul A</creatorcontrib><creatorcontrib>Siba, Peter M</creatorcontrib><creatorcontrib>Reeder, John C</creatorcontrib><creatorcontrib>Barry, Alyssa E</creatorcontrib><title>Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1.
New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines.
It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Antigens, Protozoan - genetics</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Cluster Analysis</subject><subject>Composition</subject><subject>Cross-Sectional Studies</subject><subject>DNA, Protozoan - chemistry</subject><subject>DNA, Protozoan - genetics</subject><subject>Female</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Global Health</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Malaria</subject><subject>Malaria, Vivax - parasitology</subject><subject>Male</subject><subject>Medical research</subject><subject>Membrane Proteins - genetics</subject><subject>Middle Aged</subject><subject>Molecular Sequence Data</subject><subject>Parasite antigens</subject><subject>Phylogeography</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium vivax</subject><subject>Plasmodium vivax - genetics</subject><subject>Plasmodium vivax - isolation & purification</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Protozoan Proteins - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Testing</subject><subject>Vaccines</subject><subject>Viral vaccines</subject><subject>Young Adult</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3HX1H4gOCLKCrcnka3IjlLKuC7tY8OM2nMlk2iyZpCYzRe_94abb7tKCF5KLhJPnvCfn5C2KlxhNMRH4w20Yowc3XfuhnSKEKob4o-IUS8ImlSDs8cH5pHiW0i1CTLIaPy1OKlohRrE8Lf5cutCAKxdhPToYbPDl1yGOehijKUNXDitTXhpvUnnhdWitX96FbsBBtFD-AK2tN-UcfGtbGMz7cuEg9Zkc-3JjN_CrnK2tzhVuTN9EyOzMD3ZpfInL88VmdjPD754XTzpwybzY72fF908X3-afJ9dfLq_ms-uJ5pUcJkRXjOGuFZ1umkbgqq6pBK4FIACc--ECGCJcSs1xh1GLKUG8NdAZKRuuyVnxeqe7diGp_QCTwpTVdS0ExZm42hFtgFu1jraH-FsFsOouEOJSQRysdkZJbiqKdcs7Iih0rdQdMKGBAatqAyhrfdxXG5vetNr4IYI7Ej2-8XallmGjSI0pRTwLnO8FYvg5mjSo3iZtnMtTDOP23bwmNSKi_g-USsElQiKjb3boEnIX1nchF9dbXM0IwxUnlLFMTf9B5dWa3urgTWdz_Cjh7UHCyoAbVim4cWupdAzSHahjSCma7mEiGKmts-8_Rm2drfbOzmmvDqf5kHRvZfIXqRj0_A</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Arnott, Alicia</creator><creator>Mueller, Ivo</creator><creator>Ramsland, Paul A</creator><creator>Siba, Peter M</creator><creator>Reeder, John C</creator><creator>Barry, Alyssa E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131001</creationdate><title>Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)</title><author>Arnott, Alicia ; Mueller, Ivo ; Ramsland, Paul A ; Siba, Peter M ; Reeder, John C ; Barry, Alyssa E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629t-3c2551fd7fcbbb7128849a6c7a0aa154167a503699c61f10d14306deafe99b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Antigens, Protozoan - genetics</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Cluster Analysis</topic><topic>Composition</topic><topic>Cross-Sectional Studies</topic><topic>DNA, Protozoan - chemistry</topic><topic>DNA, Protozoan - genetics</topic><topic>Female</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Global Health</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Malaria</topic><topic>Malaria, Vivax - parasitology</topic><topic>Male</topic><topic>Medical research</topic><topic>Membrane Proteins - genetics</topic><topic>Middle Aged</topic><topic>Molecular Sequence Data</topic><topic>Parasite antigens</topic><topic>Phylogeography</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium vivax</topic><topic>Plasmodium vivax - genetics</topic><topic>Plasmodium vivax - isolation & purification</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Protozoan Proteins - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Testing</topic><topic>Vaccines</topic><topic>Viral vaccines</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnott, Alicia</creatorcontrib><creatorcontrib>Mueller, Ivo</creatorcontrib><creatorcontrib>Ramsland, Paul A</creatorcontrib><creatorcontrib>Siba, Peter M</creatorcontrib><creatorcontrib>Reeder, John C</creatorcontrib><creatorcontrib>Barry, Alyssa E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnott, Alicia</au><au>Mueller, Ivo</au><au>Ramsland, Paul A</au><au>Siba, Peter M</au><au>Reeder, John C</au><au>Barry, Alyssa E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>7</volume><issue>10</issue><spage>e2506</spage><epage>e2506</epage><pages>e2506-e2506</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1.
New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines.
It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24205419</pmid><doi>10.1371/journal.pntd.0002506</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-2735 |
ispartof | PLoS neglected tropical diseases, 2013-10, Vol.7 (10), p.e2506-e2506 |
issn | 1935-2735 1935-2727 1935-2735 |
language | eng |
recordid | cdi_plos_journals_1458887741 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS) |
subjects | Adolescent Adult Aged Aged, 80 and over Antigens, Protozoan - genetics Child Child, Preschool Cluster Analysis Composition Cross-Sectional Studies DNA, Protozoan - chemistry DNA, Protozoan - genetics Female Genes Genetic aspects Global Health Haplotypes Humans Infant Infant, Newborn Malaria Malaria, Vivax - parasitology Male Medical research Membrane Proteins - genetics Middle Aged Molecular Sequence Data Parasite antigens Phylogeography Plasmodium falciparum Plasmodium vivax Plasmodium vivax - genetics Plasmodium vivax - isolation & purification Polymorphism, Single Nucleotide Protozoan Proteins - genetics Sequence Analysis, DNA Testing Vaccines Viral vaccines Young Adult |
title | Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Population%20Structure%20of%20the%20Genes%20Encoding%20the%20Malaria%20Vaccine%20Candidate,%20Plasmodium%20vivax%20Apical%20Membrane%20Antigen%201%20(PvAMA1)&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Arnott,%20Alicia&rft.date=2013-10-01&rft.volume=7&rft.issue=10&rft.spage=e2506&rft.epage=e2506&rft.pages=e2506-e2506&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0002506&rft_dat=%3Cgale_plos_%3EA351263455%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449769007&rft_id=info:pmid/24205419&rft_galeid=A351263455&rft_doaj_id=oai_doaj_org_article_96e241cd6f374afd9cfa57ca5a528ea0&rfr_iscdi=true |