Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)

The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS neglected tropical diseases 2013-10, Vol.7 (10), p.e2506-e2506
Hauptverfasser: Arnott, Alicia, Mueller, Ivo, Ramsland, Paul A, Siba, Peter M, Reeder, John C, Barry, Alyssa E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2506
container_issue 10
container_start_page e2506
container_title PLoS neglected tropical diseases
container_volume 7
creator Arnott, Alicia
Mueller, Ivo
Ramsland, Paul A
Siba, Peter M
Reeder, John C
Barry, Alyssa E
description The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1. New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines. It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule.
doi_str_mv 10.1371/journal.pntd.0002506
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1458887741</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A351263455</galeid><doaj_id>oai_doaj_org_article_96e241cd6f374afd9cfa57ca5a528ea0</doaj_id><sourcerecordid>A351263455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c629t-3c2551fd7fcbbb7128849a6c7a0aa154167a503699c61f10d14306deafe99b6c3</originalsourceid><addsrcrecordid>eNqNkl2LEzEUhgdR3HX1H4gOCLKCrcnka3IjlLKuC7tY8OM2nMlk2iyZpCYzRe_94abb7tKCF5KLhJPnvCfn5C2KlxhNMRH4w20Yowc3XfuhnSKEKob4o-IUS8ImlSDs8cH5pHiW0i1CTLIaPy1OKlohRrE8Lf5cutCAKxdhPToYbPDl1yGOehijKUNXDitTXhpvUnnhdWitX96FbsBBtFD-AK2tN-UcfGtbGMz7cuEg9Zkc-3JjN_CrnK2tzhVuTN9EyOzMD3ZpfInL88VmdjPD754XTzpwybzY72fF908X3-afJ9dfLq_ms-uJ5pUcJkRXjOGuFZ1umkbgqq6pBK4FIACc--ECGCJcSs1xh1GLKUG8NdAZKRuuyVnxeqe7diGp_QCTwpTVdS0ExZm42hFtgFu1jraH-FsFsOouEOJSQRysdkZJbiqKdcs7Iih0rdQdMKGBAatqAyhrfdxXG5vetNr4IYI7Ej2-8XallmGjSI0pRTwLnO8FYvg5mjSo3iZtnMtTDOP23bwmNSKi_g-USsElQiKjb3boEnIX1nchF9dbXM0IwxUnlLFMTf9B5dWa3urgTWdz_Cjh7UHCyoAbVim4cWupdAzSHahjSCma7mEiGKmts-8_Rm2drfbOzmmvDqf5kHRvZfIXqRj0_A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449769007</pqid></control><display><type>article</type><title>Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS)</source><creator>Arnott, Alicia ; Mueller, Ivo ; Ramsland, Paul A ; Siba, Peter M ; Reeder, John C ; Barry, Alyssa E</creator><creatorcontrib>Arnott, Alicia ; Mueller, Ivo ; Ramsland, Paul A ; Siba, Peter M ; Reeder, John C ; Barry, Alyssa E</creatorcontrib><description>The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1. New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines. It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule.</description><identifier>ISSN: 1935-2735</identifier><identifier>ISSN: 1935-2727</identifier><identifier>EISSN: 1935-2735</identifier><identifier>DOI: 10.1371/journal.pntd.0002506</identifier><identifier>PMID: 24205419</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Antigens, Protozoan - genetics ; Child ; Child, Preschool ; Cluster Analysis ; Composition ; Cross-Sectional Studies ; DNA, Protozoan - chemistry ; DNA, Protozoan - genetics ; Female ; Genes ; Genetic aspects ; Global Health ; Haplotypes ; Humans ; Infant ; Infant, Newborn ; Malaria ; Malaria, Vivax - parasitology ; Male ; Medical research ; Membrane Proteins - genetics ; Middle Aged ; Molecular Sequence Data ; Parasite antigens ; Phylogeography ; Plasmodium falciparum ; Plasmodium vivax ; Plasmodium vivax - genetics ; Plasmodium vivax - isolation &amp; purification ; Polymorphism, Single Nucleotide ; Protozoan Proteins - genetics ; Sequence Analysis, DNA ; Testing ; Vaccines ; Viral vaccines ; Young Adult</subject><ispartof>PLoS neglected tropical diseases, 2013-10, Vol.7 (10), p.e2506-e2506</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Arnott et al 2013 Arnott et al</rights><rights>2013 Arnott et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Arnott A, Mueller I, Ramsland PA, Siba PM, Reeder JC, et al. (2013) Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1). PLoS Negl Trop Dis 7(10): e2506. doi:10.1371/journal.pntd.0002506</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c629t-3c2551fd7fcbbb7128849a6c7a0aa154167a503699c61f10d14306deafe99b6c3</citedby><cites>FETCH-LOGICAL-c629t-3c2551fd7fcbbb7128849a6c7a0aa154167a503699c61f10d14306deafe99b6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814406/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3814406/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24205419$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arnott, Alicia</creatorcontrib><creatorcontrib>Mueller, Ivo</creatorcontrib><creatorcontrib>Ramsland, Paul A</creatorcontrib><creatorcontrib>Siba, Peter M</creatorcontrib><creatorcontrib>Reeder, John C</creatorcontrib><creatorcontrib>Barry, Alyssa E</creatorcontrib><title>Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)</title><title>PLoS neglected tropical diseases</title><addtitle>PLoS Negl Trop Dis</addtitle><description>The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1. New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines. It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Antigens, Protozoan - genetics</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>Cluster Analysis</subject><subject>Composition</subject><subject>Cross-Sectional Studies</subject><subject>DNA, Protozoan - chemistry</subject><subject>DNA, Protozoan - genetics</subject><subject>Female</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Global Health</subject><subject>Haplotypes</subject><subject>Humans</subject><subject>Infant</subject><subject>Infant, Newborn</subject><subject>Malaria</subject><subject>Malaria, Vivax - parasitology</subject><subject>Male</subject><subject>Medical research</subject><subject>Membrane Proteins - genetics</subject><subject>Middle Aged</subject><subject>Molecular Sequence Data</subject><subject>Parasite antigens</subject><subject>Phylogeography</subject><subject>Plasmodium falciparum</subject><subject>Plasmodium vivax</subject><subject>Plasmodium vivax - genetics</subject><subject>Plasmodium vivax - isolation &amp; purification</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Protozoan Proteins - genetics</subject><subject>Sequence Analysis, DNA</subject><subject>Testing</subject><subject>Vaccines</subject><subject>Viral vaccines</subject><subject>Young Adult</subject><issn>1935-2735</issn><issn>1935-2727</issn><issn>1935-2735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2LEzEUhgdR3HX1H4gOCLKCrcnka3IjlLKuC7tY8OM2nMlk2iyZpCYzRe_94abb7tKCF5KLhJPnvCfn5C2KlxhNMRH4w20Yowc3XfuhnSKEKob4o-IUS8ImlSDs8cH5pHiW0i1CTLIaPy1OKlohRrE8Lf5cutCAKxdhPToYbPDl1yGOehijKUNXDitTXhpvUnnhdWitX96FbsBBtFD-AK2tN-UcfGtbGMz7cuEg9Zkc-3JjN_CrnK2tzhVuTN9EyOzMD3ZpfInL88VmdjPD754XTzpwybzY72fF908X3-afJ9dfLq_ms-uJ5pUcJkRXjOGuFZ1umkbgqq6pBK4FIACc--ECGCJcSs1xh1GLKUG8NdAZKRuuyVnxeqe7diGp_QCTwpTVdS0ExZm42hFtgFu1jraH-FsFsOouEOJSQRysdkZJbiqKdcs7Iih0rdQdMKGBAatqAyhrfdxXG5vetNr4IYI7Ej2-8XallmGjSI0pRTwLnO8FYvg5mjSo3iZtnMtTDOP23bwmNSKi_g-USsElQiKjb3boEnIX1nchF9dbXM0IwxUnlLFMTf9B5dWa3urgTWdz_Cjh7UHCyoAbVim4cWupdAzSHahjSCma7mEiGKmts-8_Rm2drfbOzmmvDqf5kHRvZfIXqRj0_A</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Arnott, Alicia</creator><creator>Mueller, Ivo</creator><creator>Ramsland, Paul A</creator><creator>Siba, Peter M</creator><creator>Reeder, John C</creator><creator>Barry, Alyssa E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131001</creationdate><title>Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)</title><author>Arnott, Alicia ; Mueller, Ivo ; Ramsland, Paul A ; Siba, Peter M ; Reeder, John C ; Barry, Alyssa E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c629t-3c2551fd7fcbbb7128849a6c7a0aa154167a503699c61f10d14306deafe99b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Antigens, Protozoan - genetics</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>Cluster Analysis</topic><topic>Composition</topic><topic>Cross-Sectional Studies</topic><topic>DNA, Protozoan - chemistry</topic><topic>DNA, Protozoan - genetics</topic><topic>Female</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Global Health</topic><topic>Haplotypes</topic><topic>Humans</topic><topic>Infant</topic><topic>Infant, Newborn</topic><topic>Malaria</topic><topic>Malaria, Vivax - parasitology</topic><topic>Male</topic><topic>Medical research</topic><topic>Membrane Proteins - genetics</topic><topic>Middle Aged</topic><topic>Molecular Sequence Data</topic><topic>Parasite antigens</topic><topic>Phylogeography</topic><topic>Plasmodium falciparum</topic><topic>Plasmodium vivax</topic><topic>Plasmodium vivax - genetics</topic><topic>Plasmodium vivax - isolation &amp; purification</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Protozoan Proteins - genetics</topic><topic>Sequence Analysis, DNA</topic><topic>Testing</topic><topic>Vaccines</topic><topic>Viral vaccines</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnott, Alicia</creatorcontrib><creatorcontrib>Mueller, Ivo</creatorcontrib><creatorcontrib>Ramsland, Paul A</creatorcontrib><creatorcontrib>Siba, Peter M</creatorcontrib><creatorcontrib>Reeder, John C</creatorcontrib><creatorcontrib>Barry, Alyssa E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS neglected tropical diseases</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arnott, Alicia</au><au>Mueller, Ivo</au><au>Ramsland, Paul A</au><au>Siba, Peter M</au><au>Reeder, John C</au><au>Barry, Alyssa E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)</atitle><jtitle>PLoS neglected tropical diseases</jtitle><addtitle>PLoS Negl Trop Dis</addtitle><date>2013-10-01</date><risdate>2013</risdate><volume>7</volume><issue>10</issue><spage>e2506</spage><epage>e2506</epage><pages>e2506-e2506</pages><issn>1935-2735</issn><issn>1935-2727</issn><eissn>1935-2735</eissn><abstract>The Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1) is a promising malaria vaccine candidate, however it remains unclear which regions are naturally targeted by host immunity and whether its high genetic diversity will preclude coverage by a monovalent vaccine. To assess its feasibility as a vaccine candidate, we investigated the global population structure of PvAMA1. New sequences from Papua New Guinea (PNG, n = 102) were analysed together with published sequences from Thailand (n = 158), India (n = 8), Sri Lanka (n = 23), Venezuela (n = 74) and a collection of isolates from disparate geographic locations (n = 8). A total of 92 single nucleotide polymorphisms (SNPs) were identified including 22 synonymous SNPs and 70 non-synonymous (NS) SNPs. Polymorphisms and signatures of balancing (positive Tajima's D and low FST values) selection were predominantly clustered in domain I, suggesting it is a dominant target of protective immune responses. To estimate global antigenic diversity, haplotypes comprised of (i) non-singleton (n = 40) and (ii) common (≥10% minor allele frequency, n = 23) polymorphic amino acid sites were then analysed revealing a total of 219 and 210 distinct haplotypes, respectively. Although highly diverse, the 210 haplotypes comprised of only common polymorphisms were grouped into eleven clusters, however substantial geographic differentiation was observed, and this may have implications for the efficacy of PvAMA1 vaccines in different malaria-endemic areas. The PNG haplotypes form a distinct group of clusters not found in any other geographic region. Vaccine haplotypes were rare and geographically restricted, suggesting potentially poor efficacy of candidate PvAMA1 vaccines. It may be possible to cover the existing global PvAMA1 diversity by selection of diverse alleles based on these analyses however it will be important to first define the relationships between the genetic and antigenic diversity of this molecule.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24205419</pmid><doi>10.1371/journal.pntd.0002506</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-2735
ispartof PLoS neglected tropical diseases, 2013-10, Vol.7 (10), p.e2506-e2506
issn 1935-2735
1935-2727
1935-2735
language eng
recordid cdi_plos_journals_1458887741
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access; Public Library of Science (PLoS)
subjects Adolescent
Adult
Aged
Aged, 80 and over
Antigens, Protozoan - genetics
Child
Child, Preschool
Cluster Analysis
Composition
Cross-Sectional Studies
DNA, Protozoan - chemistry
DNA, Protozoan - genetics
Female
Genes
Genetic aspects
Global Health
Haplotypes
Humans
Infant
Infant, Newborn
Malaria
Malaria, Vivax - parasitology
Male
Medical research
Membrane Proteins - genetics
Middle Aged
Molecular Sequence Data
Parasite antigens
Phylogeography
Plasmodium falciparum
Plasmodium vivax
Plasmodium vivax - genetics
Plasmodium vivax - isolation & purification
Polymorphism, Single Nucleotide
Protozoan Proteins - genetics
Sequence Analysis, DNA
Testing
Vaccines
Viral vaccines
Young Adult
title Global Population Structure of the Genes Encoding the Malaria Vaccine Candidate, Plasmodium vivax Apical Membrane Antigen 1 (PvAMA1)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T18%3A35%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20Population%20Structure%20of%20the%20Genes%20Encoding%20the%20Malaria%20Vaccine%20Candidate,%20Plasmodium%20vivax%20Apical%20Membrane%20Antigen%201%20(PvAMA1)&rft.jtitle=PLoS%20neglected%20tropical%20diseases&rft.au=Arnott,%20Alicia&rft.date=2013-10-01&rft.volume=7&rft.issue=10&rft.spage=e2506&rft.epage=e2506&rft.pages=e2506-e2506&rft.issn=1935-2735&rft.eissn=1935-2735&rft_id=info:doi/10.1371/journal.pntd.0002506&rft_dat=%3Cgale_plos_%3EA351263455%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449769007&rft_id=info:pmid/24205419&rft_galeid=A351263455&rft_doaj_id=oai_doaj_org_article_96e241cd6f374afd9cfa57ca5a528ea0&rfr_iscdi=true