Antinociceptive effects of analgesic-antitumor peptide (AGAP), a neurotoxin from the scorpion Buthus martensii Karsch, on formalin-induced inflammatory pain through a mitogen-activated protein kinases-dependent mechanism in mice

In the present study, we investigated the anti-nociceptive effect and the underlying mechanism of the analgesic-antitumor peptide (AGAP), a neurotoxin from the scorpion Buthus martensii Karsch. AGAP in doses of 0.2, 1 and 5 µg was injected intraplantarly (i.pl.) before formalin injection 10 min at t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-11, Vol.8 (11), p.e78239
Hauptverfasser: Mao, Qinghong, Ruan, Jiaping, Cai, Xueting, Lu, Wuguang, Ye, Juan, Yang, Jie, Yang, Yang, Sun, Xiaoyan, Cao, Junli, Cao, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present study, we investigated the anti-nociceptive effect and the underlying mechanism of the analgesic-antitumor peptide (AGAP), a neurotoxin from the scorpion Buthus martensii Karsch. AGAP in doses of 0.2, 1 and 5 µg was injected intraplantarly (i.pl.) before formalin injection 10 min at the same site. The suppression by intraplantar injection of AGAP on formalin-induced spontaneous nociceptive behaviors was investigated. The results show that AGAP could dose-dependently inhibit formalin-induced two-phase spontaneous flinching response. To investigate the mechanism of action of treatment with AGAP in inflammatory pain, the expressions of peripheral and spinal phosphorylated mitogen-activated protein kinases (phospho-MAPKs) including p-p38, p-ERK and p-JNK were examined. We found that formalin increased the expressions of peripheral and spinal MAPKs, which were prevented by pre-intraplantar injection of AGAP in inflammation pain model in mice. AGAP could also decrease the expression of spinal Fos induced by formalin. Furthermore, combinations the lower doses of the inhibitors of MAPKs (U0126, SP600125, or SB203580 0.1 µg) with the lower dose of AGAP (0.2 µg), the results suggested that AGAP could potentiate the effects of the inhibitors of MAPKs on the inflammatory pain. The present results indicate that pre-intraplantar injection of AGAP prevents the inflammatory pain induced by formalin through a MAPKs-mediated mechanism in mice.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0078239