What can we learn from global sensitivity analysis of biochemical systems?

Most biological models of intermediate size, and probably all large models, need to cope with the fact that many of their parameter values are unknown. In addition, it may not be possible to identify these values unambiguously on the basis of experimental data. This poses the question how reliable p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-11, Vol.8 (11), p.e79244-e79244
Hauptverfasser: Kent, Edward, Neumann, Stefan, Kummer, Ursula, Mendes, Pedro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e79244
container_issue 11
container_start_page e79244
container_title PloS one
container_volume 8
creator Kent, Edward
Neumann, Stefan
Kummer, Ursula
Mendes, Pedro
description Most biological models of intermediate size, and probably all large models, need to cope with the fact that many of their parameter values are unknown. In addition, it may not be possible to identify these values unambiguously on the basis of experimental data. This poses the question how reliable predictions made using such models are. Sensitivity analysis is commonly used to measure the impact of each model parameter on its variables. However, the results of such analyses can be dependent on an exact set of parameter values due to nonlinearity. To mitigate this problem, global sensitivity analysis techniques are used to calculate parameter sensitivities in a wider parameter space. We applied global sensitivity analysis to a selection of five signalling and metabolic models, several of which incorporate experimentally well-determined parameters. Assuming these models represent physiological reality, we explored how the results could change under increasing amounts of parameter uncertainty. Our results show that parameter sensitivities calculated with the physiological parameter values are not necessarily the most frequently observed under random sampling, even in a small interval around the physiological values. Often multimodal distributions were observed. Unsurprisingly, the range of possible sensitivity coefficient values increased with the level of parameter uncertainty, though the amount of parameter uncertainty at which the pattern of control was able to change differed among the models analysed. We suggest that this level of uncertainty can be used as a global measure of model robustness. Finally a comparison of different global sensitivity analysis techniques shows that, if high-throughput computing resources are available, then random sampling may actually be the most suitable technique.
doi_str_mv 10.1371/journal.pone.0079244
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1458577168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478277008</galeid><doaj_id>oai_doaj_org_article_d2557e0971704118be3852fd9bca581c</doaj_id><sourcerecordid>A478277008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-4b13882014a6c51c07b5c6f116851f3250cfa22e03801a203d8fec9cd3539bee3</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEoqXwBggiISFYzOBLHDsbUFVxGVSpEtel5TgnM66ceLCdwrw9TietJqgL5IUt-zv_ufjPsqcYLTHl-M2lG3yv7HLrelgixCtSFPeyY1xRsigJovcPzkfZoxAuEWJUlOXD7IgUCS6YOM4-_9yomGvV578ht6B8n7fedfnaulrZPEAfTDRXJu5ylbLtggm5a_PaOL2BzuiR2YUIXXj3OHvQKhvgybSfZN8_vP929mlxfvFxdXZ6vtBlReKiqDEVgiBcqFIzrBGvmS5bjEvBcEsJQ7pVhACiAmGVim9EC7rSDWW0qgHoSfZ8r7u1LshpDEHi1A_jPMkkYrUnGqcu5dabTvmddMrI6wvn11L5aLQF2RDGOKCKY44KjEUNVDDSNlWtFRNYJ623U7ah7qDR0Eev7Ex0_tKbjVy7K0kFEYSPxbyaBLz7NUCIsjNBg7WqBzdc112xVHpZJvTFP-jd3U3UWqUGTN-6lFePovK04CknR2iklndQaTXjtyXPtCbdzwJezwISE-FPXKshBLn6-uX_2Ysfc_blAbsBZeMmODtE4_owB4s9qL0LwUN7O2SM5Gj5m2nI0fJysnwKe3b4QbdBNx6nfwEdPvou</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458577168</pqid></control><display><type>article</type><title>What can we learn from global sensitivity analysis of biochemical systems?</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Kent, Edward ; Neumann, Stefan ; Kummer, Ursula ; Mendes, Pedro</creator><contributor>Torres, Nestor V.</contributor><creatorcontrib>Kent, Edward ; Neumann, Stefan ; Kummer, Ursula ; Mendes, Pedro ; Torres, Nestor V.</creatorcontrib><description>Most biological models of intermediate size, and probably all large models, need to cope with the fact that many of their parameter values are unknown. In addition, it may not be possible to identify these values unambiguously on the basis of experimental data. This poses the question how reliable predictions made using such models are. Sensitivity analysis is commonly used to measure the impact of each model parameter on its variables. However, the results of such analyses can be dependent on an exact set of parameter values due to nonlinearity. To mitigate this problem, global sensitivity analysis techniques are used to calculate parameter sensitivities in a wider parameter space. We applied global sensitivity analysis to a selection of five signalling and metabolic models, several of which incorporate experimentally well-determined parameters. Assuming these models represent physiological reality, we explored how the results could change under increasing amounts of parameter uncertainty. Our results show that parameter sensitivities calculated with the physiological parameter values are not necessarily the most frequently observed under random sampling, even in a small interval around the physiological values. Often multimodal distributions were observed. Unsurprisingly, the range of possible sensitivity coefficient values increased with the level of parameter uncertainty, though the amount of parameter uncertainty at which the pattern of control was able to change differed among the models analysed. We suggest that this level of uncertainty can be used as a global measure of model robustness. Finally a comparison of different global sensitivity analysis techniques shows that, if high-throughput computing resources are available, then random sampling may actually be the most suitable technique.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0079244</identifier><identifier>PMID: 24244458</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bioinformatics ; Biological models (mathematics) ; Biology ; Cell cycle ; Chemistry ; Computer science ; Enzymes ; Kinases ; Metabolism ; Metabolome ; Models, Biological ; Nonlinear systems ; Ordinary differential equations ; Parameter sensitivity ; Parameter uncertainty ; Parameters ; Physiology ; Random sampling ; Sampling ; Sensitivity analysis ; Signal transduction ; Signaling ; Stability ; Statistical sampling ; Trypanosoma brucei</subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e79244-e79244</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Kent et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Kent et al 2013 Kent et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-4b13882014a6c51c07b5c6f116851f3250cfa22e03801a203d8fec9cd3539bee3</citedby><cites>FETCH-LOGICAL-c692t-4b13882014a6c51c07b5c6f116851f3250cfa22e03801a203d8fec9cd3539bee3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828278/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3828278/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24244458$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Torres, Nestor V.</contributor><creatorcontrib>Kent, Edward</creatorcontrib><creatorcontrib>Neumann, Stefan</creatorcontrib><creatorcontrib>Kummer, Ursula</creatorcontrib><creatorcontrib>Mendes, Pedro</creatorcontrib><title>What can we learn from global sensitivity analysis of biochemical systems?</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Most biological models of intermediate size, and probably all large models, need to cope with the fact that many of their parameter values are unknown. In addition, it may not be possible to identify these values unambiguously on the basis of experimental data. This poses the question how reliable predictions made using such models are. Sensitivity analysis is commonly used to measure the impact of each model parameter on its variables. However, the results of such analyses can be dependent on an exact set of parameter values due to nonlinearity. To mitigate this problem, global sensitivity analysis techniques are used to calculate parameter sensitivities in a wider parameter space. We applied global sensitivity analysis to a selection of five signalling and metabolic models, several of which incorporate experimentally well-determined parameters. Assuming these models represent physiological reality, we explored how the results could change under increasing amounts of parameter uncertainty. Our results show that parameter sensitivities calculated with the physiological parameter values are not necessarily the most frequently observed under random sampling, even in a small interval around the physiological values. Often multimodal distributions were observed. Unsurprisingly, the range of possible sensitivity coefficient values increased with the level of parameter uncertainty, though the amount of parameter uncertainty at which the pattern of control was able to change differed among the models analysed. We suggest that this level of uncertainty can be used as a global measure of model robustness. Finally a comparison of different global sensitivity analysis techniques shows that, if high-throughput computing resources are available, then random sampling may actually be the most suitable technique.</description><subject>Bioinformatics</subject><subject>Biological models (mathematics)</subject><subject>Biology</subject><subject>Cell cycle</subject><subject>Chemistry</subject><subject>Computer science</subject><subject>Enzymes</subject><subject>Kinases</subject><subject>Metabolism</subject><subject>Metabolome</subject><subject>Models, Biological</subject><subject>Nonlinear systems</subject><subject>Ordinary differential equations</subject><subject>Parameter sensitivity</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>Physiology</subject><subject>Random sampling</subject><subject>Sampling</subject><subject>Sensitivity analysis</subject><subject>Signal transduction</subject><subject>Signaling</subject><subject>Stability</subject><subject>Statistical sampling</subject><subject>Trypanosoma brucei</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkstu1DAUhiMEoqXwBggiISFYzOBLHDsbUFVxGVSpEtel5TgnM66ceLCdwrw9TietJqgL5IUt-zv_ufjPsqcYLTHl-M2lG3yv7HLrelgixCtSFPeyY1xRsigJovcPzkfZoxAuEWJUlOXD7IgUCS6YOM4-_9yomGvV578ht6B8n7fedfnaulrZPEAfTDRXJu5ylbLtggm5a_PaOL2BzuiR2YUIXXj3OHvQKhvgybSfZN8_vP929mlxfvFxdXZ6vtBlReKiqDEVgiBcqFIzrBGvmS5bjEvBcEsJQ7pVhACiAmGVim9EC7rSDWW0qgHoSfZ8r7u1LshpDEHi1A_jPMkkYrUnGqcu5dabTvmddMrI6wvn11L5aLQF2RDGOKCKY44KjEUNVDDSNlWtFRNYJ623U7ah7qDR0Eev7Ex0_tKbjVy7K0kFEYSPxbyaBLz7NUCIsjNBg7WqBzdc112xVHpZJvTFP-jd3U3UWqUGTN-6lFePovK04CknR2iklndQaTXjtyXPtCbdzwJezwISE-FPXKshBLn6-uX_2Ysfc_blAbsBZeMmODtE4_owB4s9qL0LwUN7O2SM5Gj5m2nI0fJysnwKe3b4QbdBNx6nfwEdPvou</recordid><startdate>20131114</startdate><enddate>20131114</enddate><creator>Kent, Edward</creator><creator>Neumann, Stefan</creator><creator>Kummer, Ursula</creator><creator>Mendes, Pedro</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131114</creationdate><title>What can we learn from global sensitivity analysis of biochemical systems?</title><author>Kent, Edward ; Neumann, Stefan ; Kummer, Ursula ; Mendes, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-4b13882014a6c51c07b5c6f116851f3250cfa22e03801a203d8fec9cd3539bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bioinformatics</topic><topic>Biological models (mathematics)</topic><topic>Biology</topic><topic>Cell cycle</topic><topic>Chemistry</topic><topic>Computer science</topic><topic>Enzymes</topic><topic>Kinases</topic><topic>Metabolism</topic><topic>Metabolome</topic><topic>Models, Biological</topic><topic>Nonlinear systems</topic><topic>Ordinary differential equations</topic><topic>Parameter sensitivity</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>Physiology</topic><topic>Random sampling</topic><topic>Sampling</topic><topic>Sensitivity analysis</topic><topic>Signal transduction</topic><topic>Signaling</topic><topic>Stability</topic><topic>Statistical sampling</topic><topic>Trypanosoma brucei</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kent, Edward</creatorcontrib><creatorcontrib>Neumann, Stefan</creatorcontrib><creatorcontrib>Kummer, Ursula</creatorcontrib><creatorcontrib>Mendes, Pedro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kent, Edward</au><au>Neumann, Stefan</au><au>Kummer, Ursula</au><au>Mendes, Pedro</au><au>Torres, Nestor V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>What can we learn from global sensitivity analysis of biochemical systems?</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-14</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e79244</spage><epage>e79244</epage><pages>e79244-e79244</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Most biological models of intermediate size, and probably all large models, need to cope with the fact that many of their parameter values are unknown. In addition, it may not be possible to identify these values unambiguously on the basis of experimental data. This poses the question how reliable predictions made using such models are. Sensitivity analysis is commonly used to measure the impact of each model parameter on its variables. However, the results of such analyses can be dependent on an exact set of parameter values due to nonlinearity. To mitigate this problem, global sensitivity analysis techniques are used to calculate parameter sensitivities in a wider parameter space. We applied global sensitivity analysis to a selection of five signalling and metabolic models, several of which incorporate experimentally well-determined parameters. Assuming these models represent physiological reality, we explored how the results could change under increasing amounts of parameter uncertainty. Our results show that parameter sensitivities calculated with the physiological parameter values are not necessarily the most frequently observed under random sampling, even in a small interval around the physiological values. Often multimodal distributions were observed. Unsurprisingly, the range of possible sensitivity coefficient values increased with the level of parameter uncertainty, though the amount of parameter uncertainty at which the pattern of control was able to change differed among the models analysed. We suggest that this level of uncertainty can be used as a global measure of model robustness. Finally a comparison of different global sensitivity analysis techniques shows that, if high-throughput computing resources are available, then random sampling may actually be the most suitable technique.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24244458</pmid><doi>10.1371/journal.pone.0079244</doi><tpages>e79244</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-11, Vol.8 (11), p.e79244-e79244
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1458577168
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Bioinformatics
Biological models (mathematics)
Biology
Cell cycle
Chemistry
Computer science
Enzymes
Kinases
Metabolism
Metabolome
Models, Biological
Nonlinear systems
Ordinary differential equations
Parameter sensitivity
Parameter uncertainty
Parameters
Physiology
Random sampling
Sampling
Sensitivity analysis
Signal transduction
Signaling
Stability
Statistical sampling
Trypanosoma brucei
title What can we learn from global sensitivity analysis of biochemical systems?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T14%3A21%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=What%20can%20we%20learn%20from%20global%20sensitivity%20analysis%20of%20biochemical%20systems?&rft.jtitle=PloS%20one&rft.au=Kent,%20Edward&rft.date=2013-11-14&rft.volume=8&rft.issue=11&rft.spage=e79244&rft.epage=e79244&rft.pages=e79244-e79244&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0079244&rft_dat=%3Cgale_plos_%3EA478277008%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458577168&rft_id=info:pmid/24244458&rft_galeid=A478277008&rft_doaj_id=oai_doaj_org_article_d2557e0971704118be3852fd9bca581c&rfr_iscdi=true