Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid Jacobaea carniolica (Asteraceae)
Reproductive interactions among cytotypes in their contact zones determine whether these cytotypes can co-exist and form stable contact zones or not. In autopolyploids, heteroploid cross-compatibilities might depend on parental ploidy, but tests of this hypothesis in autopolyploid systems with more...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-11, Vol.8 (11), p.e78959-e78959 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e78959 |
---|---|
container_issue | 11 |
container_start_page | e78959 |
container_title | PloS one |
container_volume | 8 |
creator | Sonnleitner, Michaela Weis, Birgit Flatscher, Ruth García, Pedro Escobar Suda, Jan Krejčíková, Jana Schneeweiss, Gerald M Winkler, Manuela Schönswetter, Peter Hülber, Karl |
description | Reproductive interactions among cytotypes in their contact zones determine whether these cytotypes can co-exist and form stable contact zones or not. In autopolyploids, heteroploid cross-compatibilities might depend on parental ploidy, but tests of this hypothesis in autopolyploid systems with more than two ploidies are lacking. Here, we study Jacobaea carniolica, which comprises diploid, tetraploid, and hexaploid individuals regularly forming contact zones. Seeds obtained from in situ cross-pollinations within and among cytotypes were subjected to DNA flow cytometry and greenhouse germination experiments. Hybrid fitness and parental effects on hybrid fitness were tested with regression models comparing fitness parameters of early life stages. Irrespective of the direction of crosses, seed viability and seedling survival in diploid-polyploid crosses were substantially lower than in tetraploid-hexaploid crosses. In contrast, seedling growth traits indicated neither transgressive character expression nor any selection against hybrid offspring. Congruent with a model of genome dosage effects, these traits differed between reciprocal crosses, especially of diploids and tetraploids, where trait values resembled those of the maternal parent. The strong effect of parental ploidy on offspring fitness in heteroploid crosses may cause contact zones involving exclusively polyploid cytotypes to be less stable over longer terms than those involving diploids and polyploids. |
doi_str_mv | 10.1371/journal.pone.0078959 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1450256501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478300930</galeid><doaj_id>oai_doaj_org_article_47914826c371425cb29fc6c161cca296</doaj_id><sourcerecordid>A478300930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-67a34f9a9aaf978edcb9b2cb7ec13fb5c1ec8e29bdf120a58454b7c4af75fdfc3</originalsourceid><addsrcrecordid>eNqNk12LEzEUhgdR3HX1H4gGBNm9aE0yk5nJjVAWPyoLK37dhjPpSZslndQkI_Zn-I9NP3ZpZS8kFxMyz_vm5E1OUTxndMzKhr258UPowY1XvscxpU0rhXxQnDJZ8lHNafnwYH5SPInxhlJRtnX9uDjhFa9FU4rT4s9nCNgncGTlvJ2tSUzB93O3JmAM6hSJNyaugu3nxNjUY4zE9mSBCYPfSogOPkaMBJZZSNIiIBK9Tj6tV7iRExiSX3m33uGfQPsOEIiG0FvvrAZyPonZDzQCXjwtHhlwEZ_tv2fF9_fvvl1-HF1df5heTq5GupY8jeoGyspIkABGNi3OdCc7rrsGNStNJzRD3SKX3cwwTkG0lai6RldgGmFmRpdnxcudby4rqn2aUbFKUC5qQVkmpjti5uFG5QyWENbKg1XbBR_mCkKy2qGqGsmqltc630zFhe64NLrWrGZaA5d19nq7323olrnYnHkAd2R6_Ke3CzX3v1TZ8oZxkQ3O9wbB_xwwJrW0UaNz0KMfNnXXrG0EozSjr_5B7z_dnppDPoDtjc_76o2pmlRNW1Iqy43X-B4qjxkurc5Pz9i8fiS4OBJkJuHvNIchRjX9-uX_2esfx-zrA3aB4NIiejck6_t4DFY7cPsuA5q7kBlVm865TUNtOkftOyfLXhxe0J3otlXKvx2sF5U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1450256501</pqid></control><display><type>article</type><title>Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid Jacobaea carniolica (Asteraceae)</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Sonnleitner, Michaela ; Weis, Birgit ; Flatscher, Ruth ; García, Pedro Escobar ; Suda, Jan ; Krejčíková, Jana ; Schneeweiss, Gerald M ; Winkler, Manuela ; Schönswetter, Peter ; Hülber, Karl</creator><creatorcontrib>Sonnleitner, Michaela ; Weis, Birgit ; Flatscher, Ruth ; García, Pedro Escobar ; Suda, Jan ; Krejčíková, Jana ; Schneeweiss, Gerald M ; Winkler, Manuela ; Schönswetter, Peter ; Hülber, Karl</creatorcontrib><description>Reproductive interactions among cytotypes in their contact zones determine whether these cytotypes can co-exist and form stable contact zones or not. In autopolyploids, heteroploid cross-compatibilities might depend on parental ploidy, but tests of this hypothesis in autopolyploid systems with more than two ploidies are lacking. Here, we study Jacobaea carniolica, which comprises diploid, tetraploid, and hexaploid individuals regularly forming contact zones. Seeds obtained from in situ cross-pollinations within and among cytotypes were subjected to DNA flow cytometry and greenhouse germination experiments. Hybrid fitness and parental effects on hybrid fitness were tested with regression models comparing fitness parameters of early life stages. Irrespective of the direction of crosses, seed viability and seedling survival in diploid-polyploid crosses were substantially lower than in tetraploid-hexaploid crosses. In contrast, seedling growth traits indicated neither transgressive character expression nor any selection against hybrid offspring. Congruent with a model of genome dosage effects, these traits differed between reciprocal crosses, especially of diploids and tetraploids, where trait values resembled those of the maternal parent. The strong effect of parental ploidy on offspring fitness in heteroploid crosses may cause contact zones involving exclusively polyploid cytotypes to be less stable over longer terms than those involving diploids and polyploids.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0078959</identifier><identifier>PMID: 24265735</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Abortion ; Analysis ; Asteraceae ; Asteraceae - genetics ; Asteraceae - physiology ; Castilleja ; Conservation biology ; Cytometry ; Dactylis glomerata ; Deoxyribonucleic acid ; Diploids ; DNA ; Embryos ; Endosperm - genetics ; Evolution ; Fertility ; Fitness ; Flow cytometry ; Genetic crosses ; Genetic Fitness ; Genomes ; Genomics ; Germination ; Greenhouse effect ; Hieracium ; Hybridization ; Hybridization, Genetic ; Infertility ; Landscape ecology ; Offspring ; Parenting ; Plant reproduction ; Plant sciences ; Ploidy ; Pollination - genetics ; Polyploidy ; Progeny ; Regression analysis ; Regression models ; Seedlings ; Seedlings - genetics ; Seeds ; Viability</subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e78959-e78959</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Sonnleitner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Sonnleitner et al 2013 Sonnleitner et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-67a34f9a9aaf978edcb9b2cb7ec13fb5c1ec8e29bdf120a58454b7c4af75fdfc3</citedby><cites>FETCH-LOGICAL-c692t-67a34f9a9aaf978edcb9b2cb7ec13fb5c1ec8e29bdf120a58454b7c4af75fdfc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827125/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827125/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24265735$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sonnleitner, Michaela</creatorcontrib><creatorcontrib>Weis, Birgit</creatorcontrib><creatorcontrib>Flatscher, Ruth</creatorcontrib><creatorcontrib>García, Pedro Escobar</creatorcontrib><creatorcontrib>Suda, Jan</creatorcontrib><creatorcontrib>Krejčíková, Jana</creatorcontrib><creatorcontrib>Schneeweiss, Gerald M</creatorcontrib><creatorcontrib>Winkler, Manuela</creatorcontrib><creatorcontrib>Schönswetter, Peter</creatorcontrib><creatorcontrib>Hülber, Karl</creatorcontrib><title>Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid Jacobaea carniolica (Asteraceae)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Reproductive interactions among cytotypes in their contact zones determine whether these cytotypes can co-exist and form stable contact zones or not. In autopolyploids, heteroploid cross-compatibilities might depend on parental ploidy, but tests of this hypothesis in autopolyploid systems with more than two ploidies are lacking. Here, we study Jacobaea carniolica, which comprises diploid, tetraploid, and hexaploid individuals regularly forming contact zones. Seeds obtained from in situ cross-pollinations within and among cytotypes were subjected to DNA flow cytometry and greenhouse germination experiments. Hybrid fitness and parental effects on hybrid fitness were tested with regression models comparing fitness parameters of early life stages. Irrespective of the direction of crosses, seed viability and seedling survival in diploid-polyploid crosses were substantially lower than in tetraploid-hexaploid crosses. In contrast, seedling growth traits indicated neither transgressive character expression nor any selection against hybrid offspring. Congruent with a model of genome dosage effects, these traits differed between reciprocal crosses, especially of diploids and tetraploids, where trait values resembled those of the maternal parent. The strong effect of parental ploidy on offspring fitness in heteroploid crosses may cause contact zones involving exclusively polyploid cytotypes to be less stable over longer terms than those involving diploids and polyploids.</description><subject>Abortion</subject><subject>Analysis</subject><subject>Asteraceae</subject><subject>Asteraceae - genetics</subject><subject>Asteraceae - physiology</subject><subject>Castilleja</subject><subject>Conservation biology</subject><subject>Cytometry</subject><subject>Dactylis glomerata</subject><subject>Deoxyribonucleic acid</subject><subject>Diploids</subject><subject>DNA</subject><subject>Embryos</subject><subject>Endosperm - genetics</subject><subject>Evolution</subject><subject>Fertility</subject><subject>Fitness</subject><subject>Flow cytometry</subject><subject>Genetic crosses</subject><subject>Genetic Fitness</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Germination</subject><subject>Greenhouse effect</subject><subject>Hieracium</subject><subject>Hybridization</subject><subject>Hybridization, Genetic</subject><subject>Infertility</subject><subject>Landscape ecology</subject><subject>Offspring</subject><subject>Parenting</subject><subject>Plant reproduction</subject><subject>Plant sciences</subject><subject>Ploidy</subject><subject>Pollination - genetics</subject><subject>Polyploidy</subject><subject>Progeny</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Seedlings</subject><subject>Seedlings - genetics</subject><subject>Seeds</subject><subject>Viability</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12LEzEUhgdR3HX1H4gGBNm9aE0yk5nJjVAWPyoLK37dhjPpSZslndQkI_Zn-I9NP3ZpZS8kFxMyz_vm5E1OUTxndMzKhr258UPowY1XvscxpU0rhXxQnDJZ8lHNafnwYH5SPInxhlJRtnX9uDjhFa9FU4rT4s9nCNgncGTlvJ2tSUzB93O3JmAM6hSJNyaugu3nxNjUY4zE9mSBCYPfSogOPkaMBJZZSNIiIBK9Tj6tV7iRExiSX3m33uGfQPsOEIiG0FvvrAZyPonZDzQCXjwtHhlwEZ_tv2fF9_fvvl1-HF1df5heTq5GupY8jeoGyspIkABGNi3OdCc7rrsGNStNJzRD3SKX3cwwTkG0lai6RldgGmFmRpdnxcudby4rqn2aUbFKUC5qQVkmpjti5uFG5QyWENbKg1XbBR_mCkKy2qGqGsmqltc630zFhe64NLrWrGZaA5d19nq7323olrnYnHkAd2R6_Ke3CzX3v1TZ8oZxkQ3O9wbB_xwwJrW0UaNz0KMfNnXXrG0EozSjr_5B7z_dnppDPoDtjc_76o2pmlRNW1Iqy43X-B4qjxkurc5Pz9i8fiS4OBJkJuHvNIchRjX9-uX_2esfx-zrA3aB4NIiejck6_t4DFY7cPsuA5q7kBlVm865TUNtOkftOyfLXhxe0J3otlXKvx2sF5U</recordid><startdate>20131112</startdate><enddate>20131112</enddate><creator>Sonnleitner, Michaela</creator><creator>Weis, Birgit</creator><creator>Flatscher, Ruth</creator><creator>García, Pedro Escobar</creator><creator>Suda, Jan</creator><creator>Krejčíková, Jana</creator><creator>Schneeweiss, Gerald M</creator><creator>Winkler, Manuela</creator><creator>Schönswetter, Peter</creator><creator>Hülber, Karl</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131112</creationdate><title>Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid Jacobaea carniolica (Asteraceae)</title><author>Sonnleitner, Michaela ; Weis, Birgit ; Flatscher, Ruth ; García, Pedro Escobar ; Suda, Jan ; Krejčíková, Jana ; Schneeweiss, Gerald M ; Winkler, Manuela ; Schönswetter, Peter ; Hülber, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-67a34f9a9aaf978edcb9b2cb7ec13fb5c1ec8e29bdf120a58454b7c4af75fdfc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abortion</topic><topic>Analysis</topic><topic>Asteraceae</topic><topic>Asteraceae - genetics</topic><topic>Asteraceae - physiology</topic><topic>Castilleja</topic><topic>Conservation biology</topic><topic>Cytometry</topic><topic>Dactylis glomerata</topic><topic>Deoxyribonucleic acid</topic><topic>Diploids</topic><topic>DNA</topic><topic>Embryos</topic><topic>Endosperm - genetics</topic><topic>Evolution</topic><topic>Fertility</topic><topic>Fitness</topic><topic>Flow cytometry</topic><topic>Genetic crosses</topic><topic>Genetic Fitness</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Germination</topic><topic>Greenhouse effect</topic><topic>Hieracium</topic><topic>Hybridization</topic><topic>Hybridization, Genetic</topic><topic>Infertility</topic><topic>Landscape ecology</topic><topic>Offspring</topic><topic>Parenting</topic><topic>Plant reproduction</topic><topic>Plant sciences</topic><topic>Ploidy</topic><topic>Pollination - genetics</topic><topic>Polyploidy</topic><topic>Progeny</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Seedlings</topic><topic>Seedlings - genetics</topic><topic>Seeds</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sonnleitner, Michaela</creatorcontrib><creatorcontrib>Weis, Birgit</creatorcontrib><creatorcontrib>Flatscher, Ruth</creatorcontrib><creatorcontrib>García, Pedro Escobar</creatorcontrib><creatorcontrib>Suda, Jan</creatorcontrib><creatorcontrib>Krejčíková, Jana</creatorcontrib><creatorcontrib>Schneeweiss, Gerald M</creatorcontrib><creatorcontrib>Winkler, Manuela</creatorcontrib><creatorcontrib>Schönswetter, Peter</creatorcontrib><creatorcontrib>Hülber, Karl</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sonnleitner, Michaela</au><au>Weis, Birgit</au><au>Flatscher, Ruth</au><au>García, Pedro Escobar</au><au>Suda, Jan</au><au>Krejčíková, Jana</au><au>Schneeweiss, Gerald M</au><au>Winkler, Manuela</au><au>Schönswetter, Peter</au><au>Hülber, Karl</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid Jacobaea carniolica (Asteraceae)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-12</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e78959</spage><epage>e78959</epage><pages>e78959-e78959</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Reproductive interactions among cytotypes in their contact zones determine whether these cytotypes can co-exist and form stable contact zones or not. In autopolyploids, heteroploid cross-compatibilities might depend on parental ploidy, but tests of this hypothesis in autopolyploid systems with more than two ploidies are lacking. Here, we study Jacobaea carniolica, which comprises diploid, tetraploid, and hexaploid individuals regularly forming contact zones. Seeds obtained from in situ cross-pollinations within and among cytotypes were subjected to DNA flow cytometry and greenhouse germination experiments. Hybrid fitness and parental effects on hybrid fitness were tested with regression models comparing fitness parameters of early life stages. Irrespective of the direction of crosses, seed viability and seedling survival in diploid-polyploid crosses were substantially lower than in tetraploid-hexaploid crosses. In contrast, seedling growth traits indicated neither transgressive character expression nor any selection against hybrid offspring. Congruent with a model of genome dosage effects, these traits differed between reciprocal crosses, especially of diploids and tetraploids, where trait values resembled those of the maternal parent. The strong effect of parental ploidy on offspring fitness in heteroploid crosses may cause contact zones involving exclusively polyploid cytotypes to be less stable over longer terms than those involving diploids and polyploids.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24265735</pmid><doi>10.1371/journal.pone.0078959</doi><tpages>e78959</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-11, Vol.8 (11), p.e78959-e78959 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1450256501 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Abortion Analysis Asteraceae Asteraceae - genetics Asteraceae - physiology Castilleja Conservation biology Cytometry Dactylis glomerata Deoxyribonucleic acid Diploids DNA Embryos Endosperm - genetics Evolution Fertility Fitness Flow cytometry Genetic crosses Genetic Fitness Genomes Genomics Germination Greenhouse effect Hieracium Hybridization Hybridization, Genetic Infertility Landscape ecology Offspring Parenting Plant reproduction Plant sciences Ploidy Pollination - genetics Polyploidy Progeny Regression analysis Regression models Seedlings Seedlings - genetics Seeds Viability |
title | Parental ploidy strongly affects offspring fitness in heteroploid crosses among three cytotypes of autopolyploid Jacobaea carniolica (Asteraceae) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A54%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parental%20ploidy%20strongly%20affects%20offspring%20fitness%20in%20heteroploid%20crosses%20among%20three%20cytotypes%20of%20autopolyploid%20Jacobaea%20carniolica%20(Asteraceae)&rft.jtitle=PloS%20one&rft.au=Sonnleitner,%20Michaela&rft.date=2013-11-12&rft.volume=8&rft.issue=11&rft.spage=e78959&rft.epage=e78959&rft.pages=e78959-e78959&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0078959&rft_dat=%3Cgale_plos_%3EA478300930%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1450256501&rft_id=info:pmid/24265735&rft_galeid=A478300930&rft_doaj_id=oai_doaj_org_article_47914826c371425cb29fc6c161cca296&rfr_iscdi=true |