Stabilization and anomalous hydration of collagen fibril under heating
Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones) and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable a...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-11, Vol.8 (11), p.e78526-e78526 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e78526 |
---|---|
container_issue | 11 |
container_start_page | e78526 |
container_title | PloS one |
container_volume | 8 |
creator | Gevorkian, Sasun G Allahverdyan, Armen E Gevorgyan, David S Simonian, Aleksandr L Hu, Chin-Kun |
description | Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones) and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon.
When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism.
We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen. |
doi_str_mv | 10.1371/journal.pone.0078526 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1450016355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478321495</galeid><doaj_id>oai_doaj_org_article_7a2505e3b0d94d17a910df313fc018cc</doaj_id><sourcerecordid>A478321495</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-4889cfef7d2e0db87171beb967cbce11625942673c15e6cf4277b8188b49dc4b3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7of-A9GCsOjFjPls0hthWVwdWFhw1duQJmknQyaZTVpx_fWmTneZyl5IKAmnz3lP8_YtilcQLCFm8MMmDNFLt9wFb5YAME5R9aQ4hjVGiwoB_PTgfFScpLQBgGJeVc-LI0QQIRiB4-LyppeNdfa37G3wpfQ6P2ErXRhSub7TcV8PbamCc7IzvmxtE60rB69NLNcmA757UTxrpUvm5bSfFt8vP327-LK4uv68uji_WihGeb8gnNeqNS3TyADdcAYZbExTV0w1ykBYIVoTVDGsIDWVaglirOGQ84bUWpEGnxZv9ro7F5KYLEgCEgoArDClmVjtCR3kRuyi3cp4J4K04m8hxE7I2FvljGASUUANboCuiYZM1hDoFkPcKgC5Ulnr4zRtaLZGK-P7KN1MdP7G27Xowk-BOcKMkizwbhKI4XYwqRdbm5TJRnqTDR6_u6aU15Bn9O0_6OO3m6hO5gtY34Y8V42i4pwwjhEk9UgtH6Hy0mZrVc5La3N91vB-1pCZ3vzqOzmkJFY3X_-fvf4xZ88O2JwV169TcMOYqTQHyR5UMaQUTftgMgRijPu9G2KMu5jintteH_6gh6b7fOM_SUr5rA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1450016355</pqid></control><display><type>article</type><title>Stabilization and anomalous hydration of collagen fibril under heating</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Gevorkian, Sasun G ; Allahverdyan, Armen E ; Gevorgyan, David S ; Simonian, Aleksandr L ; Hu, Chin-Kun</creator><creatorcontrib>Gevorkian, Sasun G ; Allahverdyan, Armen E ; Gevorgyan, David S ; Simonian, Aleksandr L ; Hu, Chin-Kun</creatorcontrib><description>Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones) and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon.
When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism.
We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0078526</identifier><identifier>PMID: 24244320</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Bones ; Collagen ; Collagen (type I) ; Collagen - chemistry ; Connective tissues ; Denaturation ; Heat ; Heating ; Helices ; Hot Temperature ; Hydration ; Internal friction ; Macromolecules ; Mechanical properties ; Modulus of elasticity ; Molecular interactions ; Phase transitions ; Physics ; Physiological aspects ; Physiology ; Polymers ; Polypeptides ; Protein denaturation ; Protein Stability ; Protein Structure, Secondary ; Proteins ; Rats ; Skin ; Stability ; Stabilization ; Temperature ; Temperature range ; Theory ; Tissues ; Vertebrates ; Viscoelasticity</subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e78526-e78526</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Gevorkian et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Gevorkian et al 2013 Gevorkian et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-4889cfef7d2e0db87171beb967cbce11625942673c15e6cf4277b8188b49dc4b3</citedby><cites>FETCH-LOGICAL-c758t-4889cfef7d2e0db87171beb967cbce11625942673c15e6cf4277b8188b49dc4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823754/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3823754/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24244320$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gevorkian, Sasun G</creatorcontrib><creatorcontrib>Allahverdyan, Armen E</creatorcontrib><creatorcontrib>Gevorgyan, David S</creatorcontrib><creatorcontrib>Simonian, Aleksandr L</creatorcontrib><creatorcontrib>Hu, Chin-Kun</creatorcontrib><title>Stabilization and anomalous hydration of collagen fibril under heating</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones) and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon.
When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism.
We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.</description><subject>Analysis</subject><subject>Animals</subject><subject>Bones</subject><subject>Collagen</subject><subject>Collagen (type I)</subject><subject>Collagen - chemistry</subject><subject>Connective tissues</subject><subject>Denaturation</subject><subject>Heat</subject><subject>Heating</subject><subject>Helices</subject><subject>Hot Temperature</subject><subject>Hydration</subject><subject>Internal friction</subject><subject>Macromolecules</subject><subject>Mechanical properties</subject><subject>Modulus of elasticity</subject><subject>Molecular interactions</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Polymers</subject><subject>Polypeptides</subject><subject>Protein denaturation</subject><subject>Protein Stability</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Rats</subject><subject>Skin</subject><subject>Stability</subject><subject>Stabilization</subject><subject>Temperature</subject><subject>Temperature range</subject><subject>Theory</subject><subject>Tissues</subject><subject>Vertebrates</subject><subject>Viscoelasticity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7of-A9GCsOjFjPls0hthWVwdWFhw1duQJmknQyaZTVpx_fWmTneZyl5IKAmnz3lP8_YtilcQLCFm8MMmDNFLt9wFb5YAME5R9aQ4hjVGiwoB_PTgfFScpLQBgGJeVc-LI0QQIRiB4-LyppeNdfa37G3wpfQ6P2ErXRhSub7TcV8PbamCc7IzvmxtE60rB69NLNcmA757UTxrpUvm5bSfFt8vP327-LK4uv68uji_WihGeb8gnNeqNS3TyADdcAYZbExTV0w1ykBYIVoTVDGsIDWVaglirOGQ84bUWpEGnxZv9ro7F5KYLEgCEgoArDClmVjtCR3kRuyi3cp4J4K04m8hxE7I2FvljGASUUANboCuiYZM1hDoFkPcKgC5Ulnr4zRtaLZGK-P7KN1MdP7G27Xowk-BOcKMkizwbhKI4XYwqRdbm5TJRnqTDR6_u6aU15Bn9O0_6OO3m6hO5gtY34Y8V42i4pwwjhEk9UgtH6Hy0mZrVc5La3N91vB-1pCZ3vzqOzmkJFY3X_-fvf4xZ88O2JwV169TcMOYqTQHyR5UMaQUTftgMgRijPu9G2KMu5jintteH_6gh6b7fOM_SUr5rA</recordid><startdate>20131111</startdate><enddate>20131111</enddate><creator>Gevorkian, Sasun G</creator><creator>Allahverdyan, Armen E</creator><creator>Gevorgyan, David S</creator><creator>Simonian, Aleksandr L</creator><creator>Hu, Chin-Kun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131111</creationdate><title>Stabilization and anomalous hydration of collagen fibril under heating</title><author>Gevorkian, Sasun G ; Allahverdyan, Armen E ; Gevorgyan, David S ; Simonian, Aleksandr L ; Hu, Chin-Kun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-4889cfef7d2e0db87171beb967cbce11625942673c15e6cf4277b8188b49dc4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Bones</topic><topic>Collagen</topic><topic>Collagen (type I)</topic><topic>Collagen - chemistry</topic><topic>Connective tissues</topic><topic>Denaturation</topic><topic>Heat</topic><topic>Heating</topic><topic>Helices</topic><topic>Hot Temperature</topic><topic>Hydration</topic><topic>Internal friction</topic><topic>Macromolecules</topic><topic>Mechanical properties</topic><topic>Modulus of elasticity</topic><topic>Molecular interactions</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Polymers</topic><topic>Polypeptides</topic><topic>Protein denaturation</topic><topic>Protein Stability</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Rats</topic><topic>Skin</topic><topic>Stability</topic><topic>Stabilization</topic><topic>Temperature</topic><topic>Temperature range</topic><topic>Theory</topic><topic>Tissues</topic><topic>Vertebrates</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gevorkian, Sasun G</creatorcontrib><creatorcontrib>Allahverdyan, Armen E</creatorcontrib><creatorcontrib>Gevorgyan, David S</creatorcontrib><creatorcontrib>Simonian, Aleksandr L</creatorcontrib><creatorcontrib>Hu, Chin-Kun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gevorkian, Sasun G</au><au>Allahverdyan, Armen E</au><au>Gevorgyan, David S</au><au>Simonian, Aleksandr L</au><au>Hu, Chin-Kun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stabilization and anomalous hydration of collagen fibril under heating</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-11</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e78526</spage><epage>e78526</epage><pages>e78526-e78526</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Type I collagen is the most common protein among higher vertebrates. It forms the basis of fibrous connective tissues (tendon, chord, skin, bones) and ensures mechanical stability and strength of these tissues. It is known, however, that separate triple-helical collagen macromolecules are unstable at physiological temperatures. We want to understand the mechanism of collagen stability at the intermolecular level. To this end, we study the collagen fibril, an intermediate level in the collagen hierarchy between triple-helical macromolecule and tendon.
When heating a native fibril sample, its Young's modulus decreases in temperature range 20-58°C due to partial denaturation of triple-helices, but it is approximately constant at 58-75°C, because of stabilization by inter-molecular interactions. The stabilization temperature range 58-75°C has two further important features: here the fibril absorbs water under heating and the internal friction displays a peak. We relate these experimental findings to restructuring of collagen triple-helices in fibril. A theoretical description of the experimental results is provided via a generalization of the standard Zimm-Bragg model for the helix-coil transition. It takes into account intermolecular interactions of collagen triple-helices in fibril and describes water adsorption via the Langmuir mechanism.
We uncovered an inter-molecular mechanism that stabilizes the fibril made of unstable collagen macromolecules. This mechanism can be relevant for explaining stability of collagen.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24244320</pmid><doi>10.1371/journal.pone.0078526</doi><tpages>e78526</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-11, Vol.8 (11), p.e78526-e78526 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1450016355 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Analysis Animals Bones Collagen Collagen (type I) Collagen - chemistry Connective tissues Denaturation Heat Heating Helices Hot Temperature Hydration Internal friction Macromolecules Mechanical properties Modulus of elasticity Molecular interactions Phase transitions Physics Physiological aspects Physiology Polymers Polypeptides Protein denaturation Protein Stability Protein Structure, Secondary Proteins Rats Skin Stability Stabilization Temperature Temperature range Theory Tissues Vertebrates Viscoelasticity |
title | Stabilization and anomalous hydration of collagen fibril under heating |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stabilization%20and%20anomalous%20hydration%20of%20collagen%20fibril%20under%20heating&rft.jtitle=PloS%20one&rft.au=Gevorkian,%20Sasun%20G&rft.date=2013-11-11&rft.volume=8&rft.issue=11&rft.spage=e78526&rft.epage=e78526&rft.pages=e78526-e78526&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0078526&rft_dat=%3Cgale_plos_%3EA478321495%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1450016355&rft_id=info:pmid/24244320&rft_galeid=A478321495&rft_doaj_id=oai_doaj_org_article_7a2505e3b0d94d17a910df313fc018cc&rfr_iscdi=true |