β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study

β-lactoglobulin (BLG) is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain unde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-11, Vol.8 (11), p.e79530-e79530
Hauptverfasser: Domínguez-Ramírez, Lenin, Del Moral-Ramírez, Elizabeth, Cortes-Hernández, Paulina, García-Garibay, Mariano, Jiménez-Guzmán, Judith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e79530
container_issue 11
container_start_page e79530
container_title PloS one
container_volume 8
creator Domínguez-Ramírez, Lenin
Del Moral-Ramírez, Elizabeth
Cortes-Hernández, Paulina
García-Garibay, Mariano
Jiménez-Guzmán, Judith
description β-lactoglobulin (BLG) is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i) 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii) Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii) Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv) lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG's binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control binding.
doi_str_mv 10.1371/journal.pone.0079530
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1449481648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1ffe024738bf4101890d363a157e38dd</doaj_id><sourcerecordid>1461873448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-e7a0c6dc49e3731556cdcb1e0099ada490d657f576338f074d071eff6599f26d3</originalsourceid><addsrcrecordid>eNptUstuFDEQHCEQCQt_gMASB7jsYo9fMxyQUMQjUiQucLY8dnvXi8fe2DMoe-SX-BC-iZnsJkoQJz-qqqu7VVX1nOAVoZK83aYxRx1WuxRhhbFsOcUPqlPS0nopakwf3rmfVE9K2WLMaSPE4-qkZjXnEvPT6tef38ugzZDWIXVj8PF1QSZFl3KvB58mA5ThcvQZeohDQROAgl_raFHno_VxjfSAhg0go8P-Cs3A_LK-h4x8HCDvNrrAO6SRC3DluzCByfyYlWUY7f5p9cjpUODZ8VxU3z99_Hb2ZXnx9fP52YeLpeG1GJYgNTbCGtYClZRwLow1HQGM21ZbzVpsBZeOS0Fp47BkFksCzgnetq4Wli6ql4e6u5CKOm6vKMJYyxoiWDMxzg8Mm_RW7bLvdd6rpL26_kh5rXQevAmgiHOAayZp0zlGMGkmeyqoJlwCbezs9v7oNnY9WDMtL-twr-h9JPqNWqefijY1aaYZFtWbY4GcLkcog-p9MRCCjpDGuW9BGknZdd-v_qH-fzp2YJmcSsngbpshWM2JulGpOVHqmKhJ9uLuILeimwjRv1CszGM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1449481648</pqid></control><display><type>article</type><title>β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study</title><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Domínguez-Ramírez, Lenin ; Del Moral-Ramírez, Elizabeth ; Cortes-Hernández, Paulina ; García-Garibay, Mariano ; Jiménez-Guzmán, Judith</creator><contributor>Uversky, Vladimir N.</contributor><creatorcontrib>Domínguez-Ramírez, Lenin ; Del Moral-Ramírez, Elizabeth ; Cortes-Hernández, Paulina ; García-Garibay, Mariano ; Jiménez-Guzmán, Judith ; Uversky, Vladimir N.</creatorcontrib><description>β-lactoglobulin (BLG) is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i) 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii) Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii) Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv) lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG's binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control binding.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0079530</identifier><identifier>PMID: 24255705</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino Acid Sequence ; Animals ; Binding Sites ; Biotechnology ; Cattle ; Chemical bonds ; Cholecalciferol - metabolism ; Computational Biology ; Computer applications ; Crystallization ; Fatty acids ; Hydrogen ; Hydrogen bonding ; Hydrogen bonds ; Hydrophobic and Hydrophilic Interactions ; Hydrophobicity ; Lactoglobulin ; Lactoglobulins - chemistry ; Lactoglobulins - metabolism ; Lactose ; Lactose - metabolism ; Ligands ; Milk ; Molecular docking ; Molecular Docking Simulation ; Molecular Sequence Data ; Molecular structure ; Monomers ; Protein Binding ; Protein Multimerization ; Protein structure ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Proteins ; Residues ; Sugar ; β-Lactoglobulin</subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e79530-e79530</ispartof><rights>2013 Domínguez-Ramírez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Domínguez-Ramírez et al 2013 Domínguez-Ramírez et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-e7a0c6dc49e3731556cdcb1e0099ada490d657f576338f074d071eff6599f26d3</citedby><cites>FETCH-LOGICAL-c526t-e7a0c6dc49e3731556cdcb1e0099ada490d657f576338f074d071eff6599f26d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821863/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3821863/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24255705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Uversky, Vladimir N.</contributor><creatorcontrib>Domínguez-Ramírez, Lenin</creatorcontrib><creatorcontrib>Del Moral-Ramírez, Elizabeth</creatorcontrib><creatorcontrib>Cortes-Hernández, Paulina</creatorcontrib><creatorcontrib>García-Garibay, Mariano</creatorcontrib><creatorcontrib>Jiménez-Guzmán, Judith</creatorcontrib><title>β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>β-lactoglobulin (BLG) is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i) 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii) Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii) Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv) lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG's binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control binding.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Biotechnology</subject><subject>Cattle</subject><subject>Chemical bonds</subject><subject>Cholecalciferol - metabolism</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>Crystallization</subject><subject>Fatty acids</subject><subject>Hydrogen</subject><subject>Hydrogen bonding</subject><subject>Hydrogen bonds</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Hydrophobicity</subject><subject>Lactoglobulin</subject><subject>Lactoglobulins - chemistry</subject><subject>Lactoglobulins - metabolism</subject><subject>Lactose</subject><subject>Lactose - metabolism</subject><subject>Ligands</subject><subject>Milk</subject><subject>Molecular docking</subject><subject>Molecular Docking Simulation</subject><subject>Molecular Sequence Data</subject><subject>Molecular structure</subject><subject>Monomers</subject><subject>Protein Binding</subject><subject>Protein Multimerization</subject><subject>Protein structure</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Residues</subject><subject>Sugar</subject><subject>β-Lactoglobulin</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUstuFDEQHCEQCQt_gMASB7jsYo9fMxyQUMQjUiQucLY8dnvXi8fe2DMoe-SX-BC-iZnsJkoQJz-qqqu7VVX1nOAVoZK83aYxRx1WuxRhhbFsOcUPqlPS0nopakwf3rmfVE9K2WLMaSPE4-qkZjXnEvPT6tef38ugzZDWIXVj8PF1QSZFl3KvB58mA5ThcvQZeohDQROAgl_raFHno_VxjfSAhg0go8P-Cs3A_LK-h4x8HCDvNrrAO6SRC3DluzCByfyYlWUY7f5p9cjpUODZ8VxU3z99_Hb2ZXnx9fP52YeLpeG1GJYgNTbCGtYClZRwLow1HQGM21ZbzVpsBZeOS0Fp47BkFksCzgnetq4Wli6ql4e6u5CKOm6vKMJYyxoiWDMxzg8Mm_RW7bLvdd6rpL26_kh5rXQevAmgiHOAayZp0zlGMGkmeyqoJlwCbezs9v7oNnY9WDMtL-twr-h9JPqNWqefijY1aaYZFtWbY4GcLkcog-p9MRCCjpDGuW9BGknZdd-v_qH-fzp2YJmcSsngbpshWM2JulGpOVHqmKhJ9uLuILeimwjRv1CszGM</recordid><startdate>20131108</startdate><enddate>20131108</enddate><creator>Domínguez-Ramírez, Lenin</creator><creator>Del Moral-Ramírez, Elizabeth</creator><creator>Cortes-Hernández, Paulina</creator><creator>García-Garibay, Mariano</creator><creator>Jiménez-Guzmán, Judith</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131108</creationdate><title>β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study</title><author>Domínguez-Ramírez, Lenin ; Del Moral-Ramírez, Elizabeth ; Cortes-Hernández, Paulina ; García-Garibay, Mariano ; Jiménez-Guzmán, Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-e7a0c6dc49e3731556cdcb1e0099ada490d657f576338f074d071eff6599f26d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Biotechnology</topic><topic>Cattle</topic><topic>Chemical bonds</topic><topic>Cholecalciferol - metabolism</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>Crystallization</topic><topic>Fatty acids</topic><topic>Hydrogen</topic><topic>Hydrogen bonding</topic><topic>Hydrogen bonds</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Hydrophobicity</topic><topic>Lactoglobulin</topic><topic>Lactoglobulins - chemistry</topic><topic>Lactoglobulins - metabolism</topic><topic>Lactose</topic><topic>Lactose - metabolism</topic><topic>Ligands</topic><topic>Milk</topic><topic>Molecular docking</topic><topic>Molecular Docking Simulation</topic><topic>Molecular Sequence Data</topic><topic>Molecular structure</topic><topic>Monomers</topic><topic>Protein Binding</topic><topic>Protein Multimerization</topic><topic>Protein structure</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Residues</topic><topic>Sugar</topic><topic>β-Lactoglobulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Domínguez-Ramírez, Lenin</creatorcontrib><creatorcontrib>Del Moral-Ramírez, Elizabeth</creatorcontrib><creatorcontrib>Cortes-Hernández, Paulina</creatorcontrib><creatorcontrib>García-Garibay, Mariano</creatorcontrib><creatorcontrib>Jiménez-Guzmán, Judith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Domínguez-Ramírez, Lenin</au><au>Del Moral-Ramírez, Elizabeth</au><au>Cortes-Hernández, Paulina</au><au>García-Garibay, Mariano</au><au>Jiménez-Guzmán, Judith</au><au>Uversky, Vladimir N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-08</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e79530</spage><epage>e79530</epage><pages>e79530-e79530</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>β-lactoglobulin (BLG) is an abundant milk protein relevant for industry and biotechnology, due significantly to its ability to bind a wide range of polar and apolar ligands. While hydrophobic ligand sites are known, sites for hydrophilic ligands such as the prevalent milk sugar, lactose, remain undetermined. Through the use of molecular docking we first, analyzed the known fatty acid binding sites in order to dissect their atomistic determinants and second, predicted the interaction sites for lactose with monomeric and dimeric BLG. We validated our approach against BLG structures co-crystallized with ligands and report a computational setup with a reduced number of flexible residues that is able to reproduce experimental results with high precision. Blind dockings with and without flexible side chains on BLG showed that: i) 13 experimentally-determined ligands fit the calyx requiring minimal movement of up to 7 residues out of the 23 that constitute this binding site. ii) Lactose does not bind the calyx despite conformational flexibility, but binds the dimer interface and an alternate Site C. iii) Results point to a probable lactolation site in the BLG dimer interface, at K141, consistent with previous biochemical findings. In contrast, no accessible lysines are found near Site C. iv) lactose forms hydrogen bonds with residues from both monomers stabilizing the dimer through a claw-like structure. Overall, these results improve our understanding of BLG's binding sites, importantly narrowing down the calyx residues that control ligand binding. Moreover, our results emphasize the importance of the dimer interface as an insufficiently explored, biologically relevant binding site of particular importance for hydrophilic ligands. Furthermore our analyses suggest that BLG is a robust scaffold for multiple ligand-binding, suitable for protein design, and advance our molecular understanding of its ligand sites to a point that allows manipulation to control binding.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24255705</pmid><doi>10.1371/journal.pone.0079530</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-11, Vol.8 (11), p.e79530-e79530
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1449481648
source MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Amino Acid Sequence
Animals
Binding Sites
Biotechnology
Cattle
Chemical bonds
Cholecalciferol - metabolism
Computational Biology
Computer applications
Crystallization
Fatty acids
Hydrogen
Hydrogen bonding
Hydrogen bonds
Hydrophobic and Hydrophilic Interactions
Hydrophobicity
Lactoglobulin
Lactoglobulins - chemistry
Lactoglobulins - metabolism
Lactose
Lactose - metabolism
Ligands
Milk
Molecular docking
Molecular Docking Simulation
Molecular Sequence Data
Molecular structure
Monomers
Protein Binding
Protein Multimerization
Protein structure
Protein Structure, Quaternary
Protein Structure, Secondary
Proteins
Residues
Sugar
β-Lactoglobulin
title β-lactoglobulin's conformational requirements for ligand binding at the calyx and the dimer interphase: a flexible docking study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A25%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2-lactoglobulin's%20conformational%20requirements%20for%20ligand%20binding%20at%20the%20calyx%20and%20the%20dimer%20interphase:%20a%20flexible%20docking%20study&rft.jtitle=PloS%20one&rft.au=Dom%C3%ADnguez-Ram%C3%ADrez,%20Lenin&rft.date=2013-11-08&rft.volume=8&rft.issue=11&rft.spage=e79530&rft.epage=e79530&rft.pages=e79530-e79530&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0079530&rft_dat=%3Cproquest_plos_%3E1461873448%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1449481648&rft_id=info:pmid/24255705&rft_doaj_id=oai_doaj_org_article_1ffe024738bf4101890d363a157e38dd&rfr_iscdi=true