Axonal regeneration after sciatic nerve lesion is delayed but complete in GFAP- and vimentin-deficient mice
Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann c...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-11, Vol.8 (11), p.e79395-e79395 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e79395 |
---|---|
container_issue | 11 |
container_start_page | e79395 |
container_title | PloS one |
container_volume | 8 |
creator | Berg, Alexander Zelano, Johan Pekna, Marcela Wilhelmsson, Ulrika Pekny, Milos Cullheim, Staffan |
description | Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP(-/-)Vim(-/-) mice. After sciatic nerve crush in GFAP(-/-)Vim(-/-) mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics. |
doi_str_mv | 10.1371/journal.pone.0079395 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1447821985</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478448639</galeid><doaj_id>oai_doaj_org_article_9e4368efa2ac454e93727fafd3d8bd7a</doaj_id><sourcerecordid>A478448639</sourcerecordid><originalsourceid>FETCH-LOGICAL-c921t-a292f48f5eceb014be99003075cd4e87002ed3dec041927289b3646de245f5903</originalsourceid><addsrcrecordid>eNqNk21vlTAUx4nRuDn9BkabmBhN5NonoH1jcjPdvMmSGR_2tinlwLpxKVKY27e33MvmMJsRXlBOf_9_23N6oug5wQvCMvL-zA1do-tF6xpYYJxJJpMH0S6RjMYpxezhrfFO9MT7M4wTJtL0cbRDOaVMcrwbnS8vXXBBHVTQQKd76xqkyx465I0NvwaF8AWgGvw4ZT0qoNZXUKB86JFx67aGHpBt0OHB8kuMdFOgC7uGprdNXEBpjQ1jtLYGnkaPSl17eDZ996IfB5--73-Oj44PV_vLo9hISvpYU0lLLsoEDOSY8BykxJjhLDEFB5FhTKFgBRjMiaQZFTJnKU8LoDwpE4nZXvRy69vWzqspT14RzjNBiRRJIFZbonD6TLWdXevuSjlt1SbgukrpLpy9BiWBs1RAqak2POEgWUazUpdhByIvMh284q2X_wXtkM_cptB5GIFKaJIm4-7kvXzbueKP6FpIaJZRmRLxz7WqoVUhVA0biRCSpoF_dy__0Z4sNycdBkUJZeHZiz5MiRvyNRQmFK7T9XyHs5nGnqrKXSgmSEI2Bm8mg879HMD3am29gbrWDbhhLEEiQgpoRgL66i_07kJNVKVDLWxTurCuGU3VMkCci5TJQC3uoMJbQLh3oT9KG-IzwduZIDA9XPaVHrxXq29f_589Ppmzr2-xp6Dr_tS7ehi7ys9BvgVN57zvoLxJMsFqbO_rbKixvdXU3kH24naBbkTX_cx-A5srTF8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1447821985</pqid></control><display><type>article</type><title>Axonal regeneration after sciatic nerve lesion is delayed but complete in GFAP- and vimentin-deficient mice</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Berg, Alexander ; Zelano, Johan ; Pekna, Marcela ; Wilhelmsson, Ulrika ; Pekny, Milos ; Cullheim, Staffan</creator><contributor>Phillips, William</contributor><creatorcontrib>Berg, Alexander ; Zelano, Johan ; Pekna, Marcela ; Wilhelmsson, Ulrika ; Pekny, Milos ; Cullheim, Staffan ; Phillips, William</creatorcontrib><description>Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP(-/-)Vim(-/-) mice. After sciatic nerve crush in GFAP(-/-)Vim(-/-) mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0079395</identifier><identifier>PMID: 24223940</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Animals ; Astrocytes ; Axon guidance ; Axons ; Axons - pathology ; Axotomy ; Degeneration ; Experiments ; Female ; Gastrocnemius muscle ; Genetic aspects ; Glial cells ; Glial fibrillary acidic protein ; Glial Fibrillary Acidic Protein - deficiency ; Glial Fibrillary Acidic Protein - metabolism ; Immunoglobulins ; Injury analysis ; Injury prevention ; Intermediate filament proteins ; Lesions ; Medicin och hälsovetenskap ; Mental health ; Mice ; Microglia ; Motor endplates ; Motor neurons ; Motor Neurons - pathology ; Muscles ; Muscles - innervation ; Myelin Sheath - physiology ; Nerve Regeneration ; Nervous system ; Neurodegeneration ; Neurogenesis ; Neurosciences ; Neurovetenskaper ; Physiological aspects ; Physiology ; Presynapse ; Proteins ; Recovery of Function ; Regeneration ; Regeneration (Biology) ; Rehabilitation ; Schwann cells ; Sciatic nerve ; Sciatic Nerve - pathology ; Sciatic Nerve - physiopathology ; Sciatic Neuropathy - metabolism ; Sciatic Neuropathy - pathology ; Sciatic Neuropathy - physiopathology ; Spinal cord ; Statistical analysis ; Stem cells ; Stripping ; Synapses ; Synapses - pathology ; Synaptic density ; Up-Regulation ; Vimentin ; Vimentin - deficiency ; Vimentin - metabolism</subject><ispartof>PloS one, 2013-11, Vol.8 (11), p.e79395-e79395</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Berg et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Berg et al 2013 Berg et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c921t-a292f48f5eceb014be99003075cd4e87002ed3dec041927289b3646de245f5903</citedby><cites>FETCH-LOGICAL-c921t-a292f48f5eceb014be99003075cd4e87002ed3dec041927289b3646de245f5903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815133/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3815133/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2101,2927,23865,27923,27924,53790,53792,79471,79472</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24223940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-212333$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://gup.ub.gu.se/publication/188926$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttp://kipublications.ki.se/Default.aspx?queryparsed=id:127729618$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Phillips, William</contributor><creatorcontrib>Berg, Alexander</creatorcontrib><creatorcontrib>Zelano, Johan</creatorcontrib><creatorcontrib>Pekna, Marcela</creatorcontrib><creatorcontrib>Wilhelmsson, Ulrika</creatorcontrib><creatorcontrib>Pekny, Milos</creatorcontrib><creatorcontrib>Cullheim, Staffan</creatorcontrib><title>Axonal regeneration after sciatic nerve lesion is delayed but complete in GFAP- and vimentin-deficient mice</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP(-/-)Vim(-/-) mice. After sciatic nerve crush in GFAP(-/-)Vim(-/-) mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.</description><subject>Analysis</subject><subject>Animals</subject><subject>Astrocytes</subject><subject>Axon guidance</subject><subject>Axons</subject><subject>Axons - pathology</subject><subject>Axotomy</subject><subject>Degeneration</subject><subject>Experiments</subject><subject>Female</subject><subject>Gastrocnemius muscle</subject><subject>Genetic aspects</subject><subject>Glial cells</subject><subject>Glial fibrillary acidic protein</subject><subject>Glial Fibrillary Acidic Protein - deficiency</subject><subject>Glial Fibrillary Acidic Protein - metabolism</subject><subject>Immunoglobulins</subject><subject>Injury analysis</subject><subject>Injury prevention</subject><subject>Intermediate filament proteins</subject><subject>Lesions</subject><subject>Medicin och hälsovetenskap</subject><subject>Mental health</subject><subject>Mice</subject><subject>Microglia</subject><subject>Motor endplates</subject><subject>Motor neurons</subject><subject>Motor Neurons - pathology</subject><subject>Muscles</subject><subject>Muscles - innervation</subject><subject>Myelin Sheath - physiology</subject><subject>Nerve Regeneration</subject><subject>Nervous system</subject><subject>Neurodegeneration</subject><subject>Neurogenesis</subject><subject>Neurosciences</subject><subject>Neurovetenskaper</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Presynapse</subject><subject>Proteins</subject><subject>Recovery of Function</subject><subject>Regeneration</subject><subject>Regeneration (Biology)</subject><subject>Rehabilitation</subject><subject>Schwann cells</subject><subject>Sciatic nerve</subject><subject>Sciatic Nerve - pathology</subject><subject>Sciatic Nerve - physiopathology</subject><subject>Sciatic Neuropathy - metabolism</subject><subject>Sciatic Neuropathy - pathology</subject><subject>Sciatic Neuropathy - physiopathology</subject><subject>Spinal cord</subject><subject>Statistical analysis</subject><subject>Stem cells</subject><subject>Stripping</subject><subject>Synapses</subject><subject>Synapses - pathology</subject><subject>Synaptic density</subject><subject>Up-Regulation</subject><subject>Vimentin</subject><subject>Vimentin - deficiency</subject><subject>Vimentin - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk21vlTAUx4nRuDn9BkabmBhN5NonoH1jcjPdvMmSGR_2tinlwLpxKVKY27e33MvmMJsRXlBOf_9_23N6oug5wQvCMvL-zA1do-tF6xpYYJxJJpMH0S6RjMYpxezhrfFO9MT7M4wTJtL0cbRDOaVMcrwbnS8vXXBBHVTQQKd76xqkyx465I0NvwaF8AWgGvw4ZT0qoNZXUKB86JFx67aGHpBt0OHB8kuMdFOgC7uGprdNXEBpjQ1jtLYGnkaPSl17eDZ996IfB5--73-Oj44PV_vLo9hISvpYU0lLLsoEDOSY8BykxJjhLDEFB5FhTKFgBRjMiaQZFTJnKU8LoDwpE4nZXvRy69vWzqspT14RzjNBiRRJIFZbonD6TLWdXevuSjlt1SbgukrpLpy9BiWBs1RAqak2POEgWUazUpdhByIvMh284q2X_wXtkM_cptB5GIFKaJIm4-7kvXzbueKP6FpIaJZRmRLxz7WqoVUhVA0biRCSpoF_dy__0Z4sNycdBkUJZeHZiz5MiRvyNRQmFK7T9XyHs5nGnqrKXSgmSEI2Bm8mg879HMD3am29gbrWDbhhLEEiQgpoRgL66i_07kJNVKVDLWxTurCuGU3VMkCci5TJQC3uoMJbQLh3oT9KG-IzwduZIDA9XPaVHrxXq29f_589Ppmzr2-xp6Dr_tS7ehi7ys9BvgVN57zvoLxJMsFqbO_rbKixvdXU3kH24naBbkTX_cx-A5srTF8</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Berg, Alexander</creator><creator>Zelano, Johan</creator><creator>Pekna, Marcela</creator><creator>Wilhelmsson, Ulrika</creator><creator>Pekny, Milos</creator><creator>Cullheim, Staffan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>F1U</scope><scope>DOA</scope></search><sort><creationdate>20131101</creationdate><title>Axonal regeneration after sciatic nerve lesion is delayed but complete in GFAP- and vimentin-deficient mice</title><author>Berg, Alexander ; Zelano, Johan ; Pekna, Marcela ; Wilhelmsson, Ulrika ; Pekny, Milos ; Cullheim, Staffan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c921t-a292f48f5eceb014be99003075cd4e87002ed3dec041927289b3646de245f5903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Animals</topic><topic>Astrocytes</topic><topic>Axon guidance</topic><topic>Axons</topic><topic>Axons - pathology</topic><topic>Axotomy</topic><topic>Degeneration</topic><topic>Experiments</topic><topic>Female</topic><topic>Gastrocnemius muscle</topic><topic>Genetic aspects</topic><topic>Glial cells</topic><topic>Glial fibrillary acidic protein</topic><topic>Glial Fibrillary Acidic Protein - deficiency</topic><topic>Glial Fibrillary Acidic Protein - metabolism</topic><topic>Immunoglobulins</topic><topic>Injury analysis</topic><topic>Injury prevention</topic><topic>Intermediate filament proteins</topic><topic>Lesions</topic><topic>Medicin och hälsovetenskap</topic><topic>Mental health</topic><topic>Mice</topic><topic>Microglia</topic><topic>Motor endplates</topic><topic>Motor neurons</topic><topic>Motor Neurons - pathology</topic><topic>Muscles</topic><topic>Muscles - innervation</topic><topic>Myelin Sheath - physiology</topic><topic>Nerve Regeneration</topic><topic>Nervous system</topic><topic>Neurodegeneration</topic><topic>Neurogenesis</topic><topic>Neurosciences</topic><topic>Neurovetenskaper</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Presynapse</topic><topic>Proteins</topic><topic>Recovery of Function</topic><topic>Regeneration</topic><topic>Regeneration (Biology)</topic><topic>Rehabilitation</topic><topic>Schwann cells</topic><topic>Sciatic nerve</topic><topic>Sciatic Nerve - pathology</topic><topic>Sciatic Nerve - physiopathology</topic><topic>Sciatic Neuropathy - metabolism</topic><topic>Sciatic Neuropathy - pathology</topic><topic>Sciatic Neuropathy - physiopathology</topic><topic>Spinal cord</topic><topic>Statistical analysis</topic><topic>Stem cells</topic><topic>Stripping</topic><topic>Synapses</topic><topic>Synapses - pathology</topic><topic>Synaptic density</topic><topic>Up-Regulation</topic><topic>Vimentin</topic><topic>Vimentin - deficiency</topic><topic>Vimentin - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berg, Alexander</creatorcontrib><creatorcontrib>Zelano, Johan</creatorcontrib><creatorcontrib>Pekna, Marcela</creatorcontrib><creatorcontrib>Wilhelmsson, Ulrika</creatorcontrib><creatorcontrib>Pekny, Milos</creatorcontrib><creatorcontrib>Cullheim, Staffan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>SWEPUB Göteborgs universitet</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berg, Alexander</au><au>Zelano, Johan</au><au>Pekna, Marcela</au><au>Wilhelmsson, Ulrika</au><au>Pekny, Milos</au><au>Cullheim, Staffan</au><au>Phillips, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axonal regeneration after sciatic nerve lesion is delayed but complete in GFAP- and vimentin-deficient mice</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><spage>e79395</spage><epage>e79395</epage><pages>e79395-e79395</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Peripheral axotomy of motoneurons triggers Wallerian degeneration of injured axons distal to the lesion, followed by axon regeneration. Centrally, axotomy induces loss of synapses (synaptic stripping) from the surface of lesioned motoneurons in the spinal cord. At the lesion site, reactive Schwann cells provide trophic support and guidance for outgrowing axons. The mechanisms of synaptic stripping remain elusive, but reactive astrocytes and microglia appear to be important in this process. We studied axonal regeneration and synaptic stripping of motoneurons after a sciatic nerve lesion in mice lacking the intermediate filament (nanofilament) proteins glial fibrillary acidic protein (GFAP) and vimentin, which are upregulated in reactive astrocytes and Schwann cells. Seven days after sciatic nerve transection, ultrastructural analysis of synaptic density on the somata of injured motoneurons revealed more remaining boutons covering injured somata in GFAP(-/-)Vim(-/-) mice. After sciatic nerve crush in GFAP(-/-)Vim(-/-) mice, the fraction of reinnervated motor endplates on muscle fibers of the gastrocnemius muscle was reduced 13 days after the injury, and axonal regeneration and functional recovery were delayed but complete. Thus, the absence of GFAP and vimentin in glial cells does not seem to affect the outcome after peripheral motoneuron injury but may have an important effect on the response dynamics.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24223940</pmid><doi>10.1371/journal.pone.0079395</doi><tpages>e79395</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-11, Vol.8 (11), p.e79395-e79395 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1447821985 |
source | MEDLINE; DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Analysis Animals Astrocytes Axon guidance Axons Axons - pathology Axotomy Degeneration Experiments Female Gastrocnemius muscle Genetic aspects Glial cells Glial fibrillary acidic protein Glial Fibrillary Acidic Protein - deficiency Glial Fibrillary Acidic Protein - metabolism Immunoglobulins Injury analysis Injury prevention Intermediate filament proteins Lesions Medicin och hälsovetenskap Mental health Mice Microglia Motor endplates Motor neurons Motor Neurons - pathology Muscles Muscles - innervation Myelin Sheath - physiology Nerve Regeneration Nervous system Neurodegeneration Neurogenesis Neurosciences Neurovetenskaper Physiological aspects Physiology Presynapse Proteins Recovery of Function Regeneration Regeneration (Biology) Rehabilitation Schwann cells Sciatic nerve Sciatic Nerve - pathology Sciatic Nerve - physiopathology Sciatic Neuropathy - metabolism Sciatic Neuropathy - pathology Sciatic Neuropathy - physiopathology Spinal cord Statistical analysis Stem cells Stripping Synapses Synapses - pathology Synaptic density Up-Regulation Vimentin Vimentin - deficiency Vimentin - metabolism |
title | Axonal regeneration after sciatic nerve lesion is delayed but complete in GFAP- and vimentin-deficient mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axonal%20regeneration%20after%20sciatic%20nerve%20lesion%20is%20delayed%20but%20complete%20in%20GFAP-%20and%20vimentin-deficient%20mice&rft.jtitle=PloS%20one&rft.au=Berg,%20Alexander&rft.date=2013-11-01&rft.volume=8&rft.issue=11&rft.spage=e79395&rft.epage=e79395&rft.pages=e79395-e79395&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0079395&rft_dat=%3Cgale_plos_%3EA478448639%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1447821985&rft_id=info:pmid/24223940&rft_galeid=A478448639&rft_doaj_id=oai_doaj_org_article_9e4368efa2ac454e93727fafd3d8bd7a&rfr_iscdi=true |