Genome-Wide Contribution of Genotype by Environment Interaction to Variation of Diabetes-Related Traits

While genome-wide association studies (GWAS) and candidate gene approaches have identified many genetic variants that contribute to disease risk as main effects, the impact of genotype by environment (GxE) interactions remains rather under-surveyed. To explore the importance of GxE interactions for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-10, Vol.8 (10), p.e77442-e77442
Hauptverfasser: Zheng, Ju-Sheng, Arnett, Donna K, Lee, Yu-Chi, Shen, Jian, Parnell, Laurence D, Smith, Caren E, Richardson, Kris, Li, Duo, Borecki, Ingrid B, Ordovás, José M, Lai, Chao-Qiang, Saez, Maria Eugenia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e77442
container_issue 10
container_start_page e77442
container_title PloS one
container_volume 8
creator Zheng, Ju-Sheng
Arnett, Donna K
Lee, Yu-Chi
Shen, Jian
Parnell, Laurence D
Smith, Caren E
Richardson, Kris
Li, Duo
Borecki, Ingrid B
Ordovás, José M
Lai, Chao-Qiang
Saez, Maria Eugenia
description While genome-wide association studies (GWAS) and candidate gene approaches have identified many genetic variants that contribute to disease risk as main effects, the impact of genotype by environment (GxE) interactions remains rather under-surveyed. To explore the importance of GxE interactions for diabetes-related traits, a tool for Genome-wide Complex Trait Analysis (GCTA) was used to examine GxE variance contribution of 15 macronutrients and lifestyle to the total phenotypic variance of diabetes-related traits at the genome-wide level in a European American population. GCTA identified two key environmental factors making significant contributions to the GxE variance for diabetes-related traits: carbohydrate for fasting insulin (25.1% of total variance, P -nominal = 0.032) and homeostasis model assessment of insulin resistance (HOMA-IR) (24.2% of total variance, P -nominal = 0.035), n-6 polyunsaturated fatty acid (PUFA) for HOMA-β-cell-function (39.0% of total variance, P -nominal = 0.005). To demonstrate and support the results from GCTA, a GxE GWAS was conducted with each of the significant dietary factors and a control E factor (dietary protein), which contributed a non-significant GxE variance. We observed that GxE GWAS for the environmental factor contributing a significant GxE variance yielded more significant SNPs than the control factor. For each trait, we selected all significant SNPs produced from GxE GWAS, and conducted anew the GCTA to estimate the variance they contributed. We noted the variance contributed by these SNPs is higher than that of the control. In conclusion, we utilized a novel method that demonstrates the importance of genome-wide GxE interactions in explaining the variance of diabetes-related traits.
doi_str_mv 10.1371/journal.pone.0077442
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1446374263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d77372fb6dc44a3683f4c27b506200bc</doaj_id><sourcerecordid>3111158971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-3e2ff2be6fbfc757c5072ec7f382af7a32f71db8ebda4d24f03a365cffd17ac03</originalsourceid><addsrcrecordid>eNqFUl2LEzEUHURxP_QfiA744svUTJJJpi-C1N21sCDorj6Gm8xNTZkmNUkX-u-dttN1VwSfEnLPOffek1MUr2oyqZms3y_DJnroJ-vgcUKIlJzTJ8VpPWW0EpSwpw_uJ8VZSktCGtYK8bw4oZwS3tL2tFhcoQ8rrH64DstZ8Dk6vcku-DLYclfL2zWWelte-DsXg1-hz-XcZ4xg9rAcyu8QHRw5nxxozJiqr9hDxq68ieByelE8s9AnfDme58Xt5cXN7HN1_eVqPvt4XZmmZbliSK2lGoXV1shGmoZIikZa1lKwEhi1su50i7oD3lFuCQMmGmNtV0swhJ0Xbw666z4kNXqUVM25YJJTwQbE_IDoAizVOroVxK0K4NT-IcSFgpid6VF1UjJJrRad4Xzo0zLLDZW6IYOpRJtB68PYbaNX2JnBnAj9I9HHFe9-qkW4U6ytCd8P824UiOHXBlNWK5cM9j14DJukhjaEUN5y-l_osOJUCj6d8gH69i_ov43gB5SJIaWI9n7umqhdxI4stYuYGiM20F4_3PmedMzUny-wEBQsokvq9hsltdjt0oopY78BZOjZ4w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1446374263</pqid></control><display><type>article</type><title>Genome-Wide Contribution of Genotype by Environment Interaction to Variation of Diabetes-Related Traits</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Zheng, Ju-Sheng ; Arnett, Donna K ; Lee, Yu-Chi ; Shen, Jian ; Parnell, Laurence D ; Smith, Caren E ; Richardson, Kris ; Li, Duo ; Borecki, Ingrid B ; Ordovás, José M ; Lai, Chao-Qiang ; Saez, Maria Eugenia</creator><contributor>Saez, Maria Eugenia</contributor><creatorcontrib>Zheng, Ju-Sheng ; Arnett, Donna K ; Lee, Yu-Chi ; Shen, Jian ; Parnell, Laurence D ; Smith, Caren E ; Richardson, Kris ; Li, Duo ; Borecki, Ingrid B ; Ordovás, José M ; Lai, Chao-Qiang ; Saez, Maria Eugenia ; Saez, Maria Eugenia</creatorcontrib><description>While genome-wide association studies (GWAS) and candidate gene approaches have identified many genetic variants that contribute to disease risk as main effects, the impact of genotype by environment (GxE) interactions remains rather under-surveyed. To explore the importance of GxE interactions for diabetes-related traits, a tool for Genome-wide Complex Trait Analysis (GCTA) was used to examine GxE variance contribution of 15 macronutrients and lifestyle to the total phenotypic variance of diabetes-related traits at the genome-wide level in a European American population. GCTA identified two key environmental factors making significant contributions to the GxE variance for diabetes-related traits: carbohydrate for fasting insulin (25.1% of total variance, P -nominal = 0.032) and homeostasis model assessment of insulin resistance (HOMA-IR) (24.2% of total variance, P -nominal = 0.035), n-6 polyunsaturated fatty acid (PUFA) for HOMA-β-cell-function (39.0% of total variance, P -nominal = 0.005). To demonstrate and support the results from GCTA, a GxE GWAS was conducted with each of the significant dietary factors and a control E factor (dietary protein), which contributed a non-significant GxE variance. We observed that GxE GWAS for the environmental factor contributing a significant GxE variance yielded more significant SNPs than the control factor. For each trait, we selected all significant SNPs produced from GxE GWAS, and conducted anew the GCTA to estimate the variance they contributed. We noted the variance contributed by these SNPs is higher than that of the control. In conclusion, we utilized a novel method that demonstrates the importance of genome-wide GxE interactions in explaining the variance of diabetes-related traits.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0077442</identifier><identifier>PMID: 24204828</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Carbohydrates ; diabetes ; Diabetes mellitus ; Diabetes Mellitus, Type 2 - ethnology ; Diabetes Mellitus, Type 2 - genetics ; Diabetes Mellitus, Type 2 - pathology ; Diet ; Dietary Carbohydrates - administration &amp; dosage ; Dietary Fats - administration &amp; dosage ; Dietary fiber ; dietary protein ; Dietary Proteins - administration &amp; dosage ; Environmental factors ; Environmental impact ; European Americans ; European Continental Ancestry Group ; fasting ; Fatty acids ; Fatty Acids, Omega-6 - administration &amp; dosage ; Female ; Gene-Environment Interaction ; genes ; Genetic diversity ; Genetic variance ; genetic variation ; Genome, Human ; Genome-Wide Association Study ; Genomes ; Genotype ; genotype-environment interaction ; Health risk assessment ; Health risks ; Homeostasis ; Humans ; Insulin ; Insulin resistance ; Insulin Resistance - genetics ; lifestyle ; Male ; Middle Aged ; Nutrition research ; omega-6 fatty acids ; Phenotype ; phenotypic variation ; Polymorphism, Single Nucleotide ; Polyunsaturated fatty acids ; Quantitative Trait, Heritable ; risk ; Risk Factors ; Single-nucleotide polymorphism ; United States ; variance</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e77442-e77442</ispartof><rights>2013. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-3e2ff2be6fbfc757c5072ec7f382af7a32f71db8ebda4d24f03a365cffd17ac03</citedby><cites>FETCH-LOGICAL-c583t-3e2ff2be6fbfc757c5072ec7f382af7a32f71db8ebda4d24f03a365cffd17ac03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810463/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3810463/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24204828$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Saez, Maria Eugenia</contributor><creatorcontrib>Zheng, Ju-Sheng</creatorcontrib><creatorcontrib>Arnett, Donna K</creatorcontrib><creatorcontrib>Lee, Yu-Chi</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><creatorcontrib>Parnell, Laurence D</creatorcontrib><creatorcontrib>Smith, Caren E</creatorcontrib><creatorcontrib>Richardson, Kris</creatorcontrib><creatorcontrib>Li, Duo</creatorcontrib><creatorcontrib>Borecki, Ingrid B</creatorcontrib><creatorcontrib>Ordovás, José M</creatorcontrib><creatorcontrib>Lai, Chao-Qiang</creatorcontrib><creatorcontrib>Saez, Maria Eugenia</creatorcontrib><title>Genome-Wide Contribution of Genotype by Environment Interaction to Variation of Diabetes-Related Traits</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>While genome-wide association studies (GWAS) and candidate gene approaches have identified many genetic variants that contribute to disease risk as main effects, the impact of genotype by environment (GxE) interactions remains rather under-surveyed. To explore the importance of GxE interactions for diabetes-related traits, a tool for Genome-wide Complex Trait Analysis (GCTA) was used to examine GxE variance contribution of 15 macronutrients and lifestyle to the total phenotypic variance of diabetes-related traits at the genome-wide level in a European American population. GCTA identified two key environmental factors making significant contributions to the GxE variance for diabetes-related traits: carbohydrate for fasting insulin (25.1% of total variance, P -nominal = 0.032) and homeostasis model assessment of insulin resistance (HOMA-IR) (24.2% of total variance, P -nominal = 0.035), n-6 polyunsaturated fatty acid (PUFA) for HOMA-β-cell-function (39.0% of total variance, P -nominal = 0.005). To demonstrate and support the results from GCTA, a GxE GWAS was conducted with each of the significant dietary factors and a control E factor (dietary protein), which contributed a non-significant GxE variance. We observed that GxE GWAS for the environmental factor contributing a significant GxE variance yielded more significant SNPs than the control factor. For each trait, we selected all significant SNPs produced from GxE GWAS, and conducted anew the GCTA to estimate the variance they contributed. We noted the variance contributed by these SNPs is higher than that of the control. In conclusion, we utilized a novel method that demonstrates the importance of genome-wide GxE interactions in explaining the variance of diabetes-related traits.</description><subject>Adult</subject><subject>Carbohydrates</subject><subject>diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus, Type 2 - ethnology</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Diabetes Mellitus, Type 2 - pathology</subject><subject>Diet</subject><subject>Dietary Carbohydrates - administration &amp; dosage</subject><subject>Dietary Fats - administration &amp; dosage</subject><subject>Dietary fiber</subject><subject>dietary protein</subject><subject>Dietary Proteins - administration &amp; dosage</subject><subject>Environmental factors</subject><subject>Environmental impact</subject><subject>European Americans</subject><subject>European Continental Ancestry Group</subject><subject>fasting</subject><subject>Fatty acids</subject><subject>Fatty Acids, Omega-6 - administration &amp; dosage</subject><subject>Female</subject><subject>Gene-Environment Interaction</subject><subject>genes</subject><subject>Genetic diversity</subject><subject>Genetic variance</subject><subject>genetic variation</subject><subject>Genome, Human</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genotype</subject><subject>genotype-environment interaction</subject><subject>Health risk assessment</subject><subject>Health risks</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Insulin Resistance - genetics</subject><subject>lifestyle</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Nutrition research</subject><subject>omega-6 fatty acids</subject><subject>Phenotype</subject><subject>phenotypic variation</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Polyunsaturated fatty acids</subject><subject>Quantitative Trait, Heritable</subject><subject>risk</subject><subject>Risk Factors</subject><subject>Single-nucleotide polymorphism</subject><subject>United States</subject><subject>variance</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqFUl2LEzEUHURxP_QfiA744svUTJJJpi-C1N21sCDorj6Gm8xNTZkmNUkX-u-dttN1VwSfEnLPOffek1MUr2oyqZms3y_DJnroJ-vgcUKIlJzTJ8VpPWW0EpSwpw_uJ8VZSktCGtYK8bw4oZwS3tL2tFhcoQ8rrH64DstZ8Dk6vcku-DLYclfL2zWWelte-DsXg1-hz-XcZ4xg9rAcyu8QHRw5nxxozJiqr9hDxq68ieByelE8s9AnfDme58Xt5cXN7HN1_eVqPvt4XZmmZbliSK2lGoXV1shGmoZIikZa1lKwEhi1su50i7oD3lFuCQMmGmNtV0swhJ0Xbw666z4kNXqUVM25YJJTwQbE_IDoAizVOroVxK0K4NT-IcSFgpid6VF1UjJJrRad4Xzo0zLLDZW6IYOpRJtB68PYbaNX2JnBnAj9I9HHFe9-qkW4U6ytCd8P824UiOHXBlNWK5cM9j14DJukhjaEUN5y-l_osOJUCj6d8gH69i_ov43gB5SJIaWI9n7umqhdxI4stYuYGiM20F4_3PmedMzUny-wEBQsokvq9hsltdjt0oopY78BZOjZ4w</recordid><startdate>20131028</startdate><enddate>20131028</enddate><creator>Zheng, Ju-Sheng</creator><creator>Arnett, Donna K</creator><creator>Lee, Yu-Chi</creator><creator>Shen, Jian</creator><creator>Parnell, Laurence D</creator><creator>Smith, Caren E</creator><creator>Richardson, Kris</creator><creator>Li, Duo</creator><creator>Borecki, Ingrid B</creator><creator>Ordovás, José M</creator><creator>Lai, Chao-Qiang</creator><creator>Saez, Maria Eugenia</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131028</creationdate><title>Genome-Wide Contribution of Genotype by Environment Interaction to Variation of Diabetes-Related Traits</title><author>Zheng, Ju-Sheng ; Arnett, Donna K ; Lee, Yu-Chi ; Shen, Jian ; Parnell, Laurence D ; Smith, Caren E ; Richardson, Kris ; Li, Duo ; Borecki, Ingrid B ; Ordovás, José M ; Lai, Chao-Qiang ; Saez, Maria Eugenia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-3e2ff2be6fbfc757c5072ec7f382af7a32f71db8ebda4d24f03a365cffd17ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adult</topic><topic>Carbohydrates</topic><topic>diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus, Type 2 - ethnology</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Diabetes Mellitus, Type 2 - pathology</topic><topic>Diet</topic><topic>Dietary Carbohydrates - administration &amp; dosage</topic><topic>Dietary Fats - administration &amp; dosage</topic><topic>Dietary fiber</topic><topic>dietary protein</topic><topic>Dietary Proteins - administration &amp; dosage</topic><topic>Environmental factors</topic><topic>Environmental impact</topic><topic>European Americans</topic><topic>European Continental Ancestry Group</topic><topic>fasting</topic><topic>Fatty acids</topic><topic>Fatty Acids, Omega-6 - administration &amp; dosage</topic><topic>Female</topic><topic>Gene-Environment Interaction</topic><topic>genes</topic><topic>Genetic diversity</topic><topic>Genetic variance</topic><topic>genetic variation</topic><topic>Genome, Human</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genotype</topic><topic>genotype-environment interaction</topic><topic>Health risk assessment</topic><topic>Health risks</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Insulin Resistance - genetics</topic><topic>lifestyle</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Nutrition research</topic><topic>omega-6 fatty acids</topic><topic>Phenotype</topic><topic>phenotypic variation</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Polyunsaturated fatty acids</topic><topic>Quantitative Trait, Heritable</topic><topic>risk</topic><topic>Risk Factors</topic><topic>Single-nucleotide polymorphism</topic><topic>United States</topic><topic>variance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Ju-Sheng</creatorcontrib><creatorcontrib>Arnett, Donna K</creatorcontrib><creatorcontrib>Lee, Yu-Chi</creatorcontrib><creatorcontrib>Shen, Jian</creatorcontrib><creatorcontrib>Parnell, Laurence D</creatorcontrib><creatorcontrib>Smith, Caren E</creatorcontrib><creatorcontrib>Richardson, Kris</creatorcontrib><creatorcontrib>Li, Duo</creatorcontrib><creatorcontrib>Borecki, Ingrid B</creatorcontrib><creatorcontrib>Ordovás, José M</creatorcontrib><creatorcontrib>Lai, Chao-Qiang</creatorcontrib><creatorcontrib>Saez, Maria Eugenia</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Ju-Sheng</au><au>Arnett, Donna K</au><au>Lee, Yu-Chi</au><au>Shen, Jian</au><au>Parnell, Laurence D</au><au>Smith, Caren E</au><au>Richardson, Kris</au><au>Li, Duo</au><au>Borecki, Ingrid B</au><au>Ordovás, José M</au><au>Lai, Chao-Qiang</au><au>Saez, Maria Eugenia</au><au>Saez, Maria Eugenia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Contribution of Genotype by Environment Interaction to Variation of Diabetes-Related Traits</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-28</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e77442</spage><epage>e77442</epage><pages>e77442-e77442</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>While genome-wide association studies (GWAS) and candidate gene approaches have identified many genetic variants that contribute to disease risk as main effects, the impact of genotype by environment (GxE) interactions remains rather under-surveyed. To explore the importance of GxE interactions for diabetes-related traits, a tool for Genome-wide Complex Trait Analysis (GCTA) was used to examine GxE variance contribution of 15 macronutrients and lifestyle to the total phenotypic variance of diabetes-related traits at the genome-wide level in a European American population. GCTA identified two key environmental factors making significant contributions to the GxE variance for diabetes-related traits: carbohydrate for fasting insulin (25.1% of total variance, P -nominal = 0.032) and homeostasis model assessment of insulin resistance (HOMA-IR) (24.2% of total variance, P -nominal = 0.035), n-6 polyunsaturated fatty acid (PUFA) for HOMA-β-cell-function (39.0% of total variance, P -nominal = 0.005). To demonstrate and support the results from GCTA, a GxE GWAS was conducted with each of the significant dietary factors and a control E factor (dietary protein), which contributed a non-significant GxE variance. We observed that GxE GWAS for the environmental factor contributing a significant GxE variance yielded more significant SNPs than the control factor. For each trait, we selected all significant SNPs produced from GxE GWAS, and conducted anew the GCTA to estimate the variance they contributed. We noted the variance contributed by these SNPs is higher than that of the control. In conclusion, we utilized a novel method that demonstrates the importance of genome-wide GxE interactions in explaining the variance of diabetes-related traits.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24204828</pmid><doi>10.1371/journal.pone.0077442</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-10, Vol.8 (10), p.e77442-e77442
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1446374263
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Adult
Carbohydrates
diabetes
Diabetes mellitus
Diabetes Mellitus, Type 2 - ethnology
Diabetes Mellitus, Type 2 - genetics
Diabetes Mellitus, Type 2 - pathology
Diet
Dietary Carbohydrates - administration & dosage
Dietary Fats - administration & dosage
Dietary fiber
dietary protein
Dietary Proteins - administration & dosage
Environmental factors
Environmental impact
European Americans
European Continental Ancestry Group
fasting
Fatty acids
Fatty Acids, Omega-6 - administration & dosage
Female
Gene-Environment Interaction
genes
Genetic diversity
Genetic variance
genetic variation
Genome, Human
Genome-Wide Association Study
Genomes
Genotype
genotype-environment interaction
Health risk assessment
Health risks
Homeostasis
Humans
Insulin
Insulin resistance
Insulin Resistance - genetics
lifestyle
Male
Middle Aged
Nutrition research
omega-6 fatty acids
Phenotype
phenotypic variation
Polymorphism, Single Nucleotide
Polyunsaturated fatty acids
Quantitative Trait, Heritable
risk
Risk Factors
Single-nucleotide polymorphism
United States
variance
title Genome-Wide Contribution of Genotype by Environment Interaction to Variation of Diabetes-Related Traits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Contribution%20of%20Genotype%20by%20Environment%20Interaction%20to%20Variation%20of%20Diabetes-Related%20Traits&rft.jtitle=PloS%20one&rft.au=Zheng,%20Ju-Sheng&rft.date=2013-10-28&rft.volume=8&rft.issue=10&rft.spage=e77442&rft.epage=e77442&rft.pages=e77442-e77442&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0077442&rft_dat=%3Cproquest_plos_%3E3111158971%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1446374263&rft_id=info:pmid/24204828&rft_doaj_id=oai_doaj_org_article_d77372fb6dc44a3683f4c27b506200bc&rfr_iscdi=true