Phospho-regulation of the Neurospora crassa septation initiation network
Proper cell division is essential for growth and development of uni- and multicellular organisms. The fungal septation initiation network (SIN) functions as kinase cascade that connects cell cycle progression with the initiation of cytokinesis. Miss-regulation of the homologous Hippo pathway in anim...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-10, Vol.8 (10), p.e79464-e79464 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e79464 |
---|---|
container_issue | 10 |
container_start_page | e79464 |
container_title | PloS one |
container_volume | 8 |
creator | Heilig, Yvonne Schmitt, Kerstin Seiler, Stephan |
description | Proper cell division is essential for growth and development of uni- and multicellular organisms. The fungal septation initiation network (SIN) functions as kinase cascade that connects cell cycle progression with the initiation of cytokinesis. Miss-regulation of the homologous Hippo pathway in animals results in excessive cell proliferation and formation of tumors, underscoring the conservation of both pathways. How SIN proteins interact and transmit signals through the cascade is only beginning to be understood. Moreover, our understanding of septum formation and its regulation in filamentous fungi, which represent the vast majority of the fungal kingdom, is highly fragmentary. We determined that a tripartite kinase cascade, consisting of CDC-7, SID-1 and DBF-2, together with their regulatory subunits CDC-14 and MOB-1, is important for septum formation in the model mold Neurospora crassa. DBF-2 activity and septum formation requires auto-phosphorylation at Ser499 within the activation segment and phosphorylation of Thr671 in the hydrophobic motif by SID-1. Moreover, SID-1-stimulated DBF-2 activity is further enhanced by CDC-7, supporting a stepwise activation mechanism of the tripartite SIN kinase cascade in fungi. However, in contrast to the situation described for unicellular yeasts, the localization of the entire SIN cascade to spindle pole bodies is constitutive and cell cycle independent. Moreover, all SIN proteins except CDC-7 form cortical rings prior to septum initiation and localize to constricting septa. Thus, SIN localization and activity regulation significantly differs in unicellular versus syncytial ascomycete fungi. |
doi_str_mv | 10.1371/journal.pone.0079464 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1444144549</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478172395</galeid><doaj_id>oai_doaj_org_article_c1586ba855b745b087105f3e05079fe5</doaj_id><sourcerecordid>A478172395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-8006cf4ce6a181da36ef232c80dff334be74f6d7f7ed0fccc8b2dc81ef546673</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EFQfRi12TyuTdCKWoXihUt3oZM5mQndXayTTJ-_Hszu9OyI72QEHJInvOe5OQtiucYLTAR-N2170On28XWd7BASCwppw-KY7wk5ZyXiDw8iI-KJzFeI8SI5PxxcVTSchcfF-dfGh-3jZ8HWPetTs53M29nqYHZZ-hDPvNBz0zQMepZhG3aI65zye3DDtIvH348LR5Z3UZ4Nq4nxdXHD1dn5_OLy0-rs9OLuRFMprlEiBtLDXCNJa414WBLUhqJamsJoRUIanktrIAaWWOMrMraSAyWUc4FOSle7mW3rY9q7EFUmFKaJ6PLTKz2RO31tdoGt9Hhj_Laqd2GD2ulQ3KmBWUwk7zSkrFKUFYhKTBilgBiuZ0WWNZ6P1brqw3UBroUdDsRnZ50rlFr_1MRiShDg8CbUSD4mx5iUhsXDbSt7sD3u3svBWeSyYy--ge9_3Ujtdb5Aa6zPtc1g6g6pUJiUZLlUHZxD5VHDRtnsmGsy_uThLeThMwk-J3Wuo9Rrb59_X_28vuUfX3ANqDb1ETf9oNz4hSke9Bkz8UA9q7JGKnB77fdUIPf1ej3nPbi8IPukm4NTv4CiU77Ug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444144549</pqid></control><display><type>article</type><title>Phospho-regulation of the Neurospora crassa septation initiation network</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Heilig, Yvonne ; Schmitt, Kerstin ; Seiler, Stephan</creator><contributor>Toda, Takashi</contributor><creatorcontrib>Heilig, Yvonne ; Schmitt, Kerstin ; Seiler, Stephan ; Toda, Takashi</creatorcontrib><description>Proper cell division is essential for growth and development of uni- and multicellular organisms. The fungal septation initiation network (SIN) functions as kinase cascade that connects cell cycle progression with the initiation of cytokinesis. Miss-regulation of the homologous Hippo pathway in animals results in excessive cell proliferation and formation of tumors, underscoring the conservation of both pathways. How SIN proteins interact and transmit signals through the cascade is only beginning to be understood. Moreover, our understanding of septum formation and its regulation in filamentous fungi, which represent the vast majority of the fungal kingdom, is highly fragmentary. We determined that a tripartite kinase cascade, consisting of CDC-7, SID-1 and DBF-2, together with their regulatory subunits CDC-14 and MOB-1, is important for septum formation in the model mold Neurospora crassa. DBF-2 activity and septum formation requires auto-phosphorylation at Ser499 within the activation segment and phosphorylation of Thr671 in the hydrophobic motif by SID-1. Moreover, SID-1-stimulated DBF-2 activity is further enhanced by CDC-7, supporting a stepwise activation mechanism of the tripartite SIN kinase cascade in fungi. However, in contrast to the situation described for unicellular yeasts, the localization of the entire SIN cascade to spindle pole bodies is constitutive and cell cycle independent. Moreover, all SIN proteins except CDC-7 form cortical rings prior to septum initiation and localize to constricting septa. Thus, SIN localization and activity regulation significantly differs in unicellular versus syncytial ascomycete fungi.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0079464</identifier><identifier>PMID: 24205386</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Cell cycle ; Cell division ; Cell Division - physiology ; Cell proliferation ; Conservation ; Cortex ; Cytokinesis ; Fungal Proteins - analysis ; Fungal Proteins - metabolism ; Fungal Proteins - physiology ; Fungi ; Genetics ; Genomes ; Green Fluorescent Proteins - analysis ; Homology ; Hydrophobicity ; Kinases ; Localization ; Neurospora ; Neurospora crassa ; Neurospora crassa - cytology ; Neurospora crassa - physiology ; Phosphorylation ; Physiology ; Proteins ; Recombinant Fusion Proteins - analysis ; Regulations ; Regulatory subunits ; Septation ; Septum ; Spindle pole bodies ; Tumors ; Yeast ; Yeasts</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e79464-e79464</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Heilig et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Heilig et al 2013 Heilig et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-8006cf4ce6a181da36ef232c80dff334be74f6d7f7ed0fccc8b2dc81ef546673</citedby><cites>FETCH-LOGICAL-c758t-8006cf4ce6a181da36ef232c80dff334be74f6d7f7ed0fccc8b2dc81ef546673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804505/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3804505/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79472,79473</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24205386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Toda, Takashi</contributor><creatorcontrib>Heilig, Yvonne</creatorcontrib><creatorcontrib>Schmitt, Kerstin</creatorcontrib><creatorcontrib>Seiler, Stephan</creatorcontrib><title>Phospho-regulation of the Neurospora crassa septation initiation network</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Proper cell division is essential for growth and development of uni- and multicellular organisms. The fungal septation initiation network (SIN) functions as kinase cascade that connects cell cycle progression with the initiation of cytokinesis. Miss-regulation of the homologous Hippo pathway in animals results in excessive cell proliferation and formation of tumors, underscoring the conservation of both pathways. How SIN proteins interact and transmit signals through the cascade is only beginning to be understood. Moreover, our understanding of septum formation and its regulation in filamentous fungi, which represent the vast majority of the fungal kingdom, is highly fragmentary. We determined that a tripartite kinase cascade, consisting of CDC-7, SID-1 and DBF-2, together with their regulatory subunits CDC-14 and MOB-1, is important for septum formation in the model mold Neurospora crassa. DBF-2 activity and septum formation requires auto-phosphorylation at Ser499 within the activation segment and phosphorylation of Thr671 in the hydrophobic motif by SID-1. Moreover, SID-1-stimulated DBF-2 activity is further enhanced by CDC-7, supporting a stepwise activation mechanism of the tripartite SIN kinase cascade in fungi. However, in contrast to the situation described for unicellular yeasts, the localization of the entire SIN cascade to spindle pole bodies is constitutive and cell cycle independent. Moreover, all SIN proteins except CDC-7 form cortical rings prior to septum initiation and localize to constricting septa. Thus, SIN localization and activity regulation significantly differs in unicellular versus syncytial ascomycete fungi.</description><subject>Activation</subject><subject>Cell cycle</subject><subject>Cell division</subject><subject>Cell Division - physiology</subject><subject>Cell proliferation</subject><subject>Conservation</subject><subject>Cortex</subject><subject>Cytokinesis</subject><subject>Fungal Proteins - analysis</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungal Proteins - physiology</subject><subject>Fungi</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Green Fluorescent Proteins - analysis</subject><subject>Homology</subject><subject>Hydrophobicity</subject><subject>Kinases</subject><subject>Localization</subject><subject>Neurospora</subject><subject>Neurospora crassa</subject><subject>Neurospora crassa - cytology</subject><subject>Neurospora crassa - physiology</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - analysis</subject><subject>Regulations</subject><subject>Regulatory subunits</subject><subject>Septation</subject><subject>Septum</subject><subject>Spindle pole bodies</subject><subject>Tumors</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EFQfRi12TyuTdCKWoXihUt3oZM5mQndXayTTJ-_Hszu9OyI72QEHJInvOe5OQtiucYLTAR-N2170On28XWd7BASCwppw-KY7wk5ZyXiDw8iI-KJzFeI8SI5PxxcVTSchcfF-dfGh-3jZ8HWPetTs53M29nqYHZZ-hDPvNBz0zQMepZhG3aI65zye3DDtIvH348LR5Z3UZ4Nq4nxdXHD1dn5_OLy0-rs9OLuRFMprlEiBtLDXCNJa414WBLUhqJamsJoRUIanktrIAaWWOMrMraSAyWUc4FOSle7mW3rY9q7EFUmFKaJ6PLTKz2RO31tdoGt9Hhj_Laqd2GD2ulQ3KmBWUwk7zSkrFKUFYhKTBilgBiuZ0WWNZ6P1brqw3UBroUdDsRnZ50rlFr_1MRiShDg8CbUSD4mx5iUhsXDbSt7sD3u3svBWeSyYy--ge9_3Ujtdb5Aa6zPtc1g6g6pUJiUZLlUHZxD5VHDRtnsmGsy_uThLeThMwk-J3Wuo9Rrb59_X_28vuUfX3ANqDb1ETf9oNz4hSke9Bkz8UA9q7JGKnB77fdUIPf1ej3nPbi8IPukm4NTv4CiU77Ug</recordid><startdate>20131021</startdate><enddate>20131021</enddate><creator>Heilig, Yvonne</creator><creator>Schmitt, Kerstin</creator><creator>Seiler, Stephan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131021</creationdate><title>Phospho-regulation of the Neurospora crassa septation initiation network</title><author>Heilig, Yvonne ; Schmitt, Kerstin ; Seiler, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-8006cf4ce6a181da36ef232c80dff334be74f6d7f7ed0fccc8b2dc81ef546673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation</topic><topic>Cell cycle</topic><topic>Cell division</topic><topic>Cell Division - physiology</topic><topic>Cell proliferation</topic><topic>Conservation</topic><topic>Cortex</topic><topic>Cytokinesis</topic><topic>Fungal Proteins - analysis</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungal Proteins - physiology</topic><topic>Fungi</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Green Fluorescent Proteins - analysis</topic><topic>Homology</topic><topic>Hydrophobicity</topic><topic>Kinases</topic><topic>Localization</topic><topic>Neurospora</topic><topic>Neurospora crassa</topic><topic>Neurospora crassa - cytology</topic><topic>Neurospora crassa - physiology</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - analysis</topic><topic>Regulations</topic><topic>Regulatory subunits</topic><topic>Septation</topic><topic>Septum</topic><topic>Spindle pole bodies</topic><topic>Tumors</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Heilig, Yvonne</creatorcontrib><creatorcontrib>Schmitt, Kerstin</creatorcontrib><creatorcontrib>Seiler, Stephan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Heilig, Yvonne</au><au>Schmitt, Kerstin</au><au>Seiler, Stephan</au><au>Toda, Takashi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phospho-regulation of the Neurospora crassa septation initiation network</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-21</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e79464</spage><epage>e79464</epage><pages>e79464-e79464</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Proper cell division is essential for growth and development of uni- and multicellular organisms. The fungal septation initiation network (SIN) functions as kinase cascade that connects cell cycle progression with the initiation of cytokinesis. Miss-regulation of the homologous Hippo pathway in animals results in excessive cell proliferation and formation of tumors, underscoring the conservation of both pathways. How SIN proteins interact and transmit signals through the cascade is only beginning to be understood. Moreover, our understanding of septum formation and its regulation in filamentous fungi, which represent the vast majority of the fungal kingdom, is highly fragmentary. We determined that a tripartite kinase cascade, consisting of CDC-7, SID-1 and DBF-2, together with their regulatory subunits CDC-14 and MOB-1, is important for septum formation in the model mold Neurospora crassa. DBF-2 activity and septum formation requires auto-phosphorylation at Ser499 within the activation segment and phosphorylation of Thr671 in the hydrophobic motif by SID-1. Moreover, SID-1-stimulated DBF-2 activity is further enhanced by CDC-7, supporting a stepwise activation mechanism of the tripartite SIN kinase cascade in fungi. However, in contrast to the situation described for unicellular yeasts, the localization of the entire SIN cascade to spindle pole bodies is constitutive and cell cycle independent. Moreover, all SIN proteins except CDC-7 form cortical rings prior to septum initiation and localize to constricting septa. Thus, SIN localization and activity regulation significantly differs in unicellular versus syncytial ascomycete fungi.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24205386</pmid><doi>10.1371/journal.pone.0079464</doi><tpages>e79464</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-10, Vol.8 (10), p.e79464-e79464 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1444144549 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Activation Cell cycle Cell division Cell Division - physiology Cell proliferation Conservation Cortex Cytokinesis Fungal Proteins - analysis Fungal Proteins - metabolism Fungal Proteins - physiology Fungi Genetics Genomes Green Fluorescent Proteins - analysis Homology Hydrophobicity Kinases Localization Neurospora Neurospora crassa Neurospora crassa - cytology Neurospora crassa - physiology Phosphorylation Physiology Proteins Recombinant Fusion Proteins - analysis Regulations Regulatory subunits Septation Septum Spindle pole bodies Tumors Yeast Yeasts |
title | Phospho-regulation of the Neurospora crassa septation initiation network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A40%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phospho-regulation%20of%20the%20Neurospora%20crassa%20septation%20initiation%20network&rft.jtitle=PloS%20one&rft.au=Heilig,%20Yvonne&rft.date=2013-10-21&rft.volume=8&rft.issue=10&rft.spage=e79464&rft.epage=e79464&rft.pages=e79464-e79464&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0079464&rft_dat=%3Cgale_plos_%3EA478172395%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444144549&rft_id=info:pmid/24205386&rft_galeid=A478172395&rft_doaj_id=oai_doaj_org_article_c1586ba855b745b087105f3e05079fe5&rfr_iscdi=true |