Surface roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of atherosclerosis

There is a strong research interest in identifying the surface roughness of the carotid arterial inner wall via texture analysis for early diagnosis of atherosclerosis. The purpose of this study is to assess the efficacy of texture analysis methods for identifying arterial roughness in the early sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-10, Vol.8 (10), p.e76880
Hauptverfasser: Niu, Lili, Qian, Ming, Yang, Wei, Meng, Long, Xiao, Yang, Wong, Kelvin K L, Abbott, Derek, Liu, Xin, Zheng, Hairong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e76880
container_title PloS one
container_volume 8
creator Niu, Lili
Qian, Ming
Yang, Wei
Meng, Long
Xiao, Yang
Wong, Kelvin K L
Abbott, Derek
Liu, Xin
Zheng, Hairong
description There is a strong research interest in identifying the surface roughness of the carotid arterial inner wall via texture analysis for early diagnosis of atherosclerosis. The purpose of this study is to assess the efficacy of texture analysis methods for identifying arterial roughness in the early stage of atherosclerosis. Ultrasound images of common carotid arteries of 15 normal mice fed a normal diet and 28 apoE(-/-) mice fed a high-fat diet were recorded by a high-frequency ultrasound system (Vevo 2100, frequency: 40 MHz). Six different texture feature sets were extracted based on the following methods: first-order statistics, fractal dimension texture analysis, spatial gray level dependence matrix, gray level difference statistics, the neighborhood gray tone difference matrix, and the statistical feature matrix. Statistical analysis indicates that 11 of 19 texture features can be used to distinguish between normal and abnormal groups (p
doi_str_mv 10.1371/journal.pone.0076880
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1442651569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478233270</galeid><doaj_id>oai_doaj_org_article_d4526d582d624549ae2642bfe488d45e</doaj_id><sourcerecordid>A478233270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-f65ab15b86c9e95b11c809d0a8c01f80cb6ce82302d040db753e4a6786f2038a3</originalsourceid><addsrcrecordid>eNqNkl2L1DAUhoso7jr6D0QLguDFjPluerOwLH4MLCy46m1Ik9NOhk4zJu2y8-9Nne4yBQUJNCV5zpuTN2-WvcZohWmBP279EDrdrva-gxVChZASPcnOcUnJUhBEn578n2UvYtwixKkU4nl2RhhmomToPLu_HUKtDeTBD82mgxhzCz2Y3vku93WuQw_BQczvnM57uO-HALlO5x6iiyMwtH3Q0Q-dzd1ON4msfchBh_aQW6ebzk-g7jcQfDTt-HXxZfas1m2EV9O8yH58_vT96uvy-ubL-uryemkKLvtlLbiuMK-kMCWUvMLYSFRapKVBuJbIVMKAJBQRixiyVcEpMC0KKep0b6npInt71N23PqrJtKgwY0RwzEWZiPWRsF5v1T6ka4SD8tqpPws-NCq54FLjyjJOhOWSWEEYZ6UGIhipamBSpj1IWhfTaUO1A2ugS-60M9H5Tuc2qvF3ihalpOl9Ftm7SSD4XwPE_h8tT1SjU1euq30SMzsXjbpkRbKDkgIlavUXKg0LO2dSbGqX1mcFH2YFiRmfvNFDjGp9--3_2Zufc_b9CbsB3fab6NthDFmcg-wImpSRGKB-dA4jNab-wQ01pl5NqU9lb05dfyx6iDn9DfEn_ug</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442651569</pqid></control><display><type>article</type><title>Surface roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of atherosclerosis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Niu, Lili ; Qian, Ming ; Yang, Wei ; Meng, Long ; Xiao, Yang ; Wong, Kelvin K L ; Abbott, Derek ; Liu, Xin ; Zheng, Hairong</creator><contributor>Yang, Xiaoming</contributor><creatorcontrib>Niu, Lili ; Qian, Ming ; Yang, Wei ; Meng, Long ; Xiao, Yang ; Wong, Kelvin K L ; Abbott, Derek ; Liu, Xin ; Zheng, Hairong ; Yang, Xiaoming</creatorcontrib><description>There is a strong research interest in identifying the surface roughness of the carotid arterial inner wall via texture analysis for early diagnosis of atherosclerosis. The purpose of this study is to assess the efficacy of texture analysis methods for identifying arterial roughness in the early stage of atherosclerosis. Ultrasound images of common carotid arteries of 15 normal mice fed a normal diet and 28 apoE(-/-) mice fed a high-fat diet were recorded by a high-frequency ultrasound system (Vevo 2100, frequency: 40 MHz). Six different texture feature sets were extracted based on the following methods: first-order statistics, fractal dimension texture analysis, spatial gray level dependence matrix, gray level difference statistics, the neighborhood gray tone difference matrix, and the statistical feature matrix. Statistical analysis indicates that 11 of 19 texture features can be used to distinguish between normal and abnormal groups (p&lt;0.05). When the 11 optimal features were used as inputs to a support vector machine classifier, we achieved over 89% accuracy, 87% sensitivity and 93% specificity. The accuracy, sensitivity and specificity for the k-nearest neighbor classifier were 73%, 75% and 70%, respectively. The results show that it is feasible to identify arterial surface roughness based on texture features extracted from ultrasound images of the carotid arterial wall. This method is shown to be useful for early detection and diagnosis of atherosclerosis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0076880</identifier><identifier>PMID: 24146940</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Animals ; Apolipoprotein E ; Area Under Curve ; Arteries ; Arteriosclerosis ; Atherosclerosis ; Atherosclerosis - diagnostic imaging ; Atherosclerosis - pathology ; Automation ; Biomedical engineering ; Cardiovascular disease ; Carotid arteries ; Carotid Arteries - diagnostic imaging ; Carotid Arteries - pathology ; Carotid artery ; Classifiers ; Diagnosis ; Disease Models, Animal ; Early Diagnosis ; Engineering ; Feature extraction ; Fractal analysis ; High fat diet ; Identification methods ; Image detection ; Image Processing, Computer-Assisted - methods ; K nearest neighbour classification tree analysis ; K-nearest neighbors algorithm ; Lauterbur, Paul C ; Medical diagnosis ; Methods ; Mice ; Mice, Knockout ; Radio frequency ; ROC Curve ; Sensitivity ; Signal processing ; Spatial analysis ; Statistical analysis ; Statistical methods ; Statistics ; Stroke ; Studies ; Support Vector Machine ; Surface layers ; Surface roughness ; Texture ; Ultrasonic imaging ; Ultrasonography ; Ultrasound</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e76880</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Niu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Niu et al 2013 Niu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-f65ab15b86c9e95b11c809d0a8c01f80cb6ce82302d040db753e4a6786f2038a3</citedby><cites>FETCH-LOGICAL-c758t-f65ab15b86c9e95b11c809d0a8c01f80cb6ce82302d040db753e4a6786f2038a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798305/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3798305/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24146940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yang, Xiaoming</contributor><creatorcontrib>Niu, Lili</creatorcontrib><creatorcontrib>Qian, Ming</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Meng, Long</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><creatorcontrib>Wong, Kelvin K L</creatorcontrib><creatorcontrib>Abbott, Derek</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Zheng, Hairong</creatorcontrib><title>Surface roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of atherosclerosis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>There is a strong research interest in identifying the surface roughness of the carotid arterial inner wall via texture analysis for early diagnosis of atherosclerosis. The purpose of this study is to assess the efficacy of texture analysis methods for identifying arterial roughness in the early stage of atherosclerosis. Ultrasound images of common carotid arteries of 15 normal mice fed a normal diet and 28 apoE(-/-) mice fed a high-fat diet were recorded by a high-frequency ultrasound system (Vevo 2100, frequency: 40 MHz). Six different texture feature sets were extracted based on the following methods: first-order statistics, fractal dimension texture analysis, spatial gray level dependence matrix, gray level difference statistics, the neighborhood gray tone difference matrix, and the statistical feature matrix. Statistical analysis indicates that 11 of 19 texture features can be used to distinguish between normal and abnormal groups (p&lt;0.05). When the 11 optimal features were used as inputs to a support vector machine classifier, we achieved over 89% accuracy, 87% sensitivity and 93% specificity. The accuracy, sensitivity and specificity for the k-nearest neighbor classifier were 73%, 75% and 70%, respectively. The results show that it is feasible to identify arterial surface roughness based on texture features extracted from ultrasound images of the carotid arterial wall. This method is shown to be useful for early detection and diagnosis of atherosclerosis.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Apolipoprotein E</subject><subject>Area Under Curve</subject><subject>Arteries</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Atherosclerosis - diagnostic imaging</subject><subject>Atherosclerosis - pathology</subject><subject>Automation</subject><subject>Biomedical engineering</subject><subject>Cardiovascular disease</subject><subject>Carotid arteries</subject><subject>Carotid Arteries - diagnostic imaging</subject><subject>Carotid Arteries - pathology</subject><subject>Carotid artery</subject><subject>Classifiers</subject><subject>Diagnosis</subject><subject>Disease Models, Animal</subject><subject>Early Diagnosis</subject><subject>Engineering</subject><subject>Feature extraction</subject><subject>Fractal analysis</subject><subject>High fat diet</subject><subject>Identification methods</subject><subject>Image detection</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>K nearest neighbour classification tree analysis</subject><subject>K-nearest neighbors algorithm</subject><subject>Lauterbur, Paul C</subject><subject>Medical diagnosis</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Radio frequency</subject><subject>ROC Curve</subject><subject>Sensitivity</subject><subject>Signal processing</subject><subject>Spatial analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics</subject><subject>Stroke</subject><subject>Studies</subject><subject>Support Vector Machine</subject><subject>Surface layers</subject><subject>Surface roughness</subject><subject>Texture</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>Ultrasound</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl2L1DAUhoso7jr6D0QLguDFjPluerOwLH4MLCy46m1Ik9NOhk4zJu2y8-9Nne4yBQUJNCV5zpuTN2-WvcZohWmBP279EDrdrva-gxVChZASPcnOcUnJUhBEn578n2UvYtwixKkU4nl2RhhmomToPLu_HUKtDeTBD82mgxhzCz2Y3vku93WuQw_BQczvnM57uO-HALlO5x6iiyMwtH3Q0Q-dzd1ON4msfchBh_aQW6ebzk-g7jcQfDTt-HXxZfas1m2EV9O8yH58_vT96uvy-ubL-uryemkKLvtlLbiuMK-kMCWUvMLYSFRapKVBuJbIVMKAJBQRixiyVcEpMC0KKep0b6npInt71N23PqrJtKgwY0RwzEWZiPWRsF5v1T6ka4SD8tqpPws-NCq54FLjyjJOhOWSWEEYZ6UGIhipamBSpj1IWhfTaUO1A2ugS-60M9H5Tuc2qvF3ihalpOl9Ftm7SSD4XwPE_h8tT1SjU1euq30SMzsXjbpkRbKDkgIlavUXKg0LO2dSbGqX1mcFH2YFiRmfvNFDjGp9--3_2Zufc_b9CbsB3fab6NthDFmcg-wImpSRGKB-dA4jNab-wQ01pl5NqU9lb05dfyx6iDn9DfEn_ug</recordid><startdate>20131017</startdate><enddate>20131017</enddate><creator>Niu, Lili</creator><creator>Qian, Ming</creator><creator>Yang, Wei</creator><creator>Meng, Long</creator><creator>Xiao, Yang</creator><creator>Wong, Kelvin K L</creator><creator>Abbott, Derek</creator><creator>Liu, Xin</creator><creator>Zheng, Hairong</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131017</creationdate><title>Surface roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of atherosclerosis</title><author>Niu, Lili ; Qian, Ming ; Yang, Wei ; Meng, Long ; Xiao, Yang ; Wong, Kelvin K L ; Abbott, Derek ; Liu, Xin ; Zheng, Hairong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-f65ab15b86c9e95b11c809d0a8c01f80cb6ce82302d040db753e4a6786f2038a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Apolipoprotein E</topic><topic>Area Under Curve</topic><topic>Arteries</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Atherosclerosis - diagnostic imaging</topic><topic>Atherosclerosis - pathology</topic><topic>Automation</topic><topic>Biomedical engineering</topic><topic>Cardiovascular disease</topic><topic>Carotid arteries</topic><topic>Carotid Arteries - diagnostic imaging</topic><topic>Carotid Arteries - pathology</topic><topic>Carotid artery</topic><topic>Classifiers</topic><topic>Diagnosis</topic><topic>Disease Models, Animal</topic><topic>Early Diagnosis</topic><topic>Engineering</topic><topic>Feature extraction</topic><topic>Fractal analysis</topic><topic>High fat diet</topic><topic>Identification methods</topic><topic>Image detection</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>K nearest neighbour classification tree analysis</topic><topic>K-nearest neighbors algorithm</topic><topic>Lauterbur, Paul C</topic><topic>Medical diagnosis</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Radio frequency</topic><topic>ROC Curve</topic><topic>Sensitivity</topic><topic>Signal processing</topic><topic>Spatial analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics</topic><topic>Stroke</topic><topic>Studies</topic><topic>Support Vector Machine</topic><topic>Surface layers</topic><topic>Surface roughness</topic><topic>Texture</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niu, Lili</creatorcontrib><creatorcontrib>Qian, Ming</creatorcontrib><creatorcontrib>Yang, Wei</creatorcontrib><creatorcontrib>Meng, Long</creatorcontrib><creatorcontrib>Xiao, Yang</creatorcontrib><creatorcontrib>Wong, Kelvin K L</creatorcontrib><creatorcontrib>Abbott, Derek</creatorcontrib><creatorcontrib>Liu, Xin</creatorcontrib><creatorcontrib>Zheng, Hairong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niu, Lili</au><au>Qian, Ming</au><au>Yang, Wei</au><au>Meng, Long</au><au>Xiao, Yang</au><au>Wong, Kelvin K L</au><au>Abbott, Derek</au><au>Liu, Xin</au><au>Zheng, Hairong</au><au>Yang, Xiaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of atherosclerosis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-17</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e76880</spage><pages>e76880-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>There is a strong research interest in identifying the surface roughness of the carotid arterial inner wall via texture analysis for early diagnosis of atherosclerosis. The purpose of this study is to assess the efficacy of texture analysis methods for identifying arterial roughness in the early stage of atherosclerosis. Ultrasound images of common carotid arteries of 15 normal mice fed a normal diet and 28 apoE(-/-) mice fed a high-fat diet were recorded by a high-frequency ultrasound system (Vevo 2100, frequency: 40 MHz). Six different texture feature sets were extracted based on the following methods: first-order statistics, fractal dimension texture analysis, spatial gray level dependence matrix, gray level difference statistics, the neighborhood gray tone difference matrix, and the statistical feature matrix. Statistical analysis indicates that 11 of 19 texture features can be used to distinguish between normal and abnormal groups (p&lt;0.05). When the 11 optimal features were used as inputs to a support vector machine classifier, we achieved over 89% accuracy, 87% sensitivity and 93% specificity. The accuracy, sensitivity and specificity for the k-nearest neighbor classifier were 73%, 75% and 70%, respectively. The results show that it is feasible to identify arterial surface roughness based on texture features extracted from ultrasound images of the carotid arterial wall. This method is shown to be useful for early detection and diagnosis of atherosclerosis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24146940</pmid><doi>10.1371/journal.pone.0076880</doi><tpages>e76880</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-10, Vol.8 (10), p.e76880
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1442651569
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Animals
Apolipoprotein E
Area Under Curve
Arteries
Arteriosclerosis
Atherosclerosis
Atherosclerosis - diagnostic imaging
Atherosclerosis - pathology
Automation
Biomedical engineering
Cardiovascular disease
Carotid arteries
Carotid Arteries - diagnostic imaging
Carotid Arteries - pathology
Carotid artery
Classifiers
Diagnosis
Disease Models, Animal
Early Diagnosis
Engineering
Feature extraction
Fractal analysis
High fat diet
Identification methods
Image detection
Image Processing, Computer-Assisted - methods
K nearest neighbour classification tree analysis
K-nearest neighbors algorithm
Lauterbur, Paul C
Medical diagnosis
Methods
Mice
Mice, Knockout
Radio frequency
ROC Curve
Sensitivity
Signal processing
Spatial analysis
Statistical analysis
Statistical methods
Statistics
Stroke
Studies
Support Vector Machine
Surface layers
Surface roughness
Texture
Ultrasonic imaging
Ultrasonography
Ultrasound
title Surface roughness detection of arteries via texture analysis of ultrasound images for early diagnosis of atherosclerosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T18%3A56%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20roughness%20detection%20of%20arteries%20via%20texture%20analysis%20of%20ultrasound%20images%20for%20early%20diagnosis%20of%20atherosclerosis&rft.jtitle=PloS%20one&rft.au=Niu,%20Lili&rft.date=2013-10-17&rft.volume=8&rft.issue=10&rft.spage=e76880&rft.pages=e76880-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0076880&rft_dat=%3Cgale_plos_%3EA478233270%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442651569&rft_id=info:pmid/24146940&rft_galeid=A478233270&rft_doaj_id=oai_doaj_org_article_d4526d582d624549ae2642bfe488d45e&rfr_iscdi=true