Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness
A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arous...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2013-09, Vol.9 (9), p.e1003605-e1003605 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1003605 |
---|---|
container_issue | 9 |
container_start_page | e1003605 |
container_title | PLoS genetics |
container_volume | 9 |
creator | Joiner, William J Friedman, Eliot B Hung, Hsiao-Tung Koh, Kyunghee Sowcik, Mallory Sehgal, Amita Kelz, Max B |
description | A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states. |
doi_str_mv | 10.1371/journal.pgen.1003605 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1442463413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A348216840</galeid><doaj_id>oai_doaj_org_article_160fcb5eaf8b438596ebc72b573569e1</doaj_id><sourcerecordid>A348216840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c764t-8f621d58532a4c7d91936e1429ec6d57d279b2186f259338090aaf7f05cecb3e3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7jr6D0QLgujFjEnz0eZGWBZdBxYX_LoNaXrSydhJZpN21X9v6nSXKXihlNA2ed43J-fkZNlTjFaYlPjN1g_BqW61b8GtMEKEI3YvO8WMkWVJEb1_9H2SPYpxmxhWifJhdlJQRAQT6DTbXoCD3upcuSYN1fud1arLaxVtzL3J-w2knxAshDzCXgXVW9fmP9R3MEPnIMZJCjGhyWlpXTNoaPLBBYh776K9gZF7nD0wqovwZHovsq_v3305_7C8vLpYn59dLnXJab-sDC9wwypGCkV12QgsCAdMCwGaN6xsilLUBa64KZggpEICKWVKg5gGXRMgi-z5wXff-SinNEWJKS0oJxSTRKwPROPVVu6D3anwS3pl5Z8JH1qpQjpKBxJzZHTNQJmqpqRigkOty6JmJWFcAE5eb6fdhnoHjQbXB9XNTOcrzm5k628kSadNMSWDV5NB8NdDyqLc2aih61JK_TDGTUjBRVWOe704oK1KoVlnfHLUIy7PCK0KzKtU2EW2-guVngZSbb0DY9P8TPB6JkhMDz_7Vg0xyvXnT__Bfvx39urbnH15xG5Adf0m-m7obbpAc5AeQB18jAHMXaoxkmNj3FZcjo0hp8ZIsmfHZboT3XYC-Q2KKAkS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433269871</pqid></control><display><type>article</type><title>Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Joiner, William J ; Friedman, Eliot B ; Hung, Hsiao-Tung ; Koh, Kyunghee ; Sowcik, Mallory ; Sehgal, Amita ; Kelz, Max B</creator><contributor>Maze, Mervyn</contributor><creatorcontrib>Joiner, William J ; Friedman, Eliot B ; Hung, Hsiao-Tung ; Koh, Kyunghee ; Sowcik, Mallory ; Sehgal, Amita ; Kelz, Max B ; Maze, Mervyn</creatorcontrib><description>A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003605</identifier><identifier>PMID: 24039590</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anesthesia ; Anesthetics ; Animals ; Arousal - genetics ; Arousal - physiology ; Behavior ; Brain - metabolism ; Brain - physiology ; Circadian Rhythm - physiology ; Coma ; Drosophila melanogaster - genetics ; Drosophila melanogaster - physiology ; Drosophila Proteins - genetics ; Genetic engineering ; Genetic research ; Homeostasis ; Homeostasis - physiology ; Humans ; Ion Channels - genetics ; Membrane Proteins - genetics ; Mutation ; Neurons - metabolism ; Properties ; Shaker Superfamily of Potassium Channels - genetics ; Sleep ; Sleep - genetics ; Sleep-wake cycle ; Studies ; Wakefulness ; Wakefulness - genetics</subject><ispartof>PLoS genetics, 2013-09, Vol.9 (9), p.e1003605-e1003605</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Joiner et al 2013 Joiner et al</rights><rights>2013 Joiner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Joiner WJ, Friedman EB, Hung H-T, Koh K, Sowcik M, et al. (2013) Genetic and Anatomical Basis of the Barrier Separating Wakefulness and Anesthetic-Induced Unresponsiveness. PLoS Genet 9(9): e1003605. doi:10.1371/journal.pgen.1003605</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c764t-8f621d58532a4c7d91936e1429ec6d57d279b2186f259338090aaf7f05cecb3e3</citedby><cites>FETCH-LOGICAL-c764t-8f621d58532a4c7d91936e1429ec6d57d279b2186f259338090aaf7f05cecb3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764144/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764144/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24039590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maze, Mervyn</contributor><creatorcontrib>Joiner, William J</creatorcontrib><creatorcontrib>Friedman, Eliot B</creatorcontrib><creatorcontrib>Hung, Hsiao-Tung</creatorcontrib><creatorcontrib>Koh, Kyunghee</creatorcontrib><creatorcontrib>Sowcik, Mallory</creatorcontrib><creatorcontrib>Sehgal, Amita</creatorcontrib><creatorcontrib>Kelz, Max B</creatorcontrib><title>Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states.</description><subject>Anesthesia</subject><subject>Anesthetics</subject><subject>Animals</subject><subject>Arousal - genetics</subject><subject>Arousal - physiology</subject><subject>Behavior</subject><subject>Brain - metabolism</subject><subject>Brain - physiology</subject><subject>Circadian Rhythm - physiology</subject><subject>Coma</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Genetic engineering</subject><subject>Genetic research</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>Humans</subject><subject>Ion Channels - genetics</subject><subject>Membrane Proteins - genetics</subject><subject>Mutation</subject><subject>Neurons - metabolism</subject><subject>Properties</subject><subject>Shaker Superfamily of Potassium Channels - genetics</subject><subject>Sleep</subject><subject>Sleep - genetics</subject><subject>Sleep-wake cycle</subject><subject>Studies</subject><subject>Wakefulness</subject><subject>Wakefulness - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7jr6D0QLgujFjEnz0eZGWBZdBxYX_LoNaXrSydhJZpN21X9v6nSXKXihlNA2ed43J-fkZNlTjFaYlPjN1g_BqW61b8GtMEKEI3YvO8WMkWVJEb1_9H2SPYpxmxhWifJhdlJQRAQT6DTbXoCD3upcuSYN1fud1arLaxVtzL3J-w2knxAshDzCXgXVW9fmP9R3MEPnIMZJCjGhyWlpXTNoaPLBBYh776K9gZF7nD0wqovwZHovsq_v3305_7C8vLpYn59dLnXJab-sDC9wwypGCkV12QgsCAdMCwGaN6xsilLUBa64KZggpEICKWVKg5gGXRMgi-z5wXff-SinNEWJKS0oJxSTRKwPROPVVu6D3anwS3pl5Z8JH1qpQjpKBxJzZHTNQJmqpqRigkOty6JmJWFcAE5eb6fdhnoHjQbXB9XNTOcrzm5k628kSadNMSWDV5NB8NdDyqLc2aih61JK_TDGTUjBRVWOe704oK1KoVlnfHLUIy7PCK0KzKtU2EW2-guVngZSbb0DY9P8TPB6JkhMDz_7Vg0xyvXnT__Bfvx39urbnH15xG5Adf0m-m7obbpAc5AeQB18jAHMXaoxkmNj3FZcjo0hp8ZIsmfHZboT3XYC-Q2KKAkS</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Joiner, William J</creator><creator>Friedman, Eliot B</creator><creator>Hung, Hsiao-Tung</creator><creator>Koh, Kyunghee</creator><creator>Sowcik, Mallory</creator><creator>Sehgal, Amita</creator><creator>Kelz, Max B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130901</creationdate><title>Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness</title><author>Joiner, William J ; Friedman, Eliot B ; Hung, Hsiao-Tung ; Koh, Kyunghee ; Sowcik, Mallory ; Sehgal, Amita ; Kelz, Max B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c764t-8f621d58532a4c7d91936e1429ec6d57d279b2186f259338090aaf7f05cecb3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anesthesia</topic><topic>Anesthetics</topic><topic>Animals</topic><topic>Arousal - genetics</topic><topic>Arousal - physiology</topic><topic>Behavior</topic><topic>Brain - metabolism</topic><topic>Brain - physiology</topic><topic>Circadian Rhythm - physiology</topic><topic>Coma</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Genetic engineering</topic><topic>Genetic research</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>Humans</topic><topic>Ion Channels - genetics</topic><topic>Membrane Proteins - genetics</topic><topic>Mutation</topic><topic>Neurons - metabolism</topic><topic>Properties</topic><topic>Shaker Superfamily of Potassium Channels - genetics</topic><topic>Sleep</topic><topic>Sleep - genetics</topic><topic>Sleep-wake cycle</topic><topic>Studies</topic><topic>Wakefulness</topic><topic>Wakefulness - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joiner, William J</creatorcontrib><creatorcontrib>Friedman, Eliot B</creatorcontrib><creatorcontrib>Hung, Hsiao-Tung</creatorcontrib><creatorcontrib>Koh, Kyunghee</creatorcontrib><creatorcontrib>Sowcik, Mallory</creatorcontrib><creatorcontrib>Sehgal, Amita</creatorcontrib><creatorcontrib>Kelz, Max B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joiner, William J</au><au>Friedman, Eliot B</au><au>Hung, Hsiao-Tung</au><au>Koh, Kyunghee</au><au>Sowcik, Mallory</au><au>Sehgal, Amita</au><au>Kelz, Max B</au><au>Maze, Mervyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>9</volume><issue>9</issue><spage>e1003605</spage><epage>e1003605</epage><pages>e1003605-e1003605</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24039590</pmid><doi>10.1371/journal.pgen.1003605</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2013-09, Vol.9 (9), p.e1003605-e1003605 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_1442463413 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Anesthesia Anesthetics Animals Arousal - genetics Arousal - physiology Behavior Brain - metabolism Brain - physiology Circadian Rhythm - physiology Coma Drosophila melanogaster - genetics Drosophila melanogaster - physiology Drosophila Proteins - genetics Genetic engineering Genetic research Homeostasis Homeostasis - physiology Humans Ion Channels - genetics Membrane Proteins - genetics Mutation Neurons - metabolism Properties Shaker Superfamily of Potassium Channels - genetics Sleep Sleep - genetics Sleep-wake cycle Studies Wakefulness Wakefulness - genetics |
title | Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20and%20anatomical%20basis%20of%20the%20barrier%20separating%20wakefulness%20and%20anesthetic-induced%20unresponsiveness&rft.jtitle=PLoS%20genetics&rft.au=Joiner,%20William%20J&rft.date=2013-09-01&rft.volume=9&rft.issue=9&rft.spage=e1003605&rft.epage=e1003605&rft.pages=e1003605-e1003605&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003605&rft_dat=%3Cgale_plos_%3EA348216840%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433269871&rft_id=info:pmid/24039590&rft_galeid=A348216840&rft_doaj_id=oai_doaj_org_article_160fcb5eaf8b438596ebc72b573569e1&rfr_iscdi=true |