Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness

A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2013-09, Vol.9 (9), p.e1003605-e1003605
Hauptverfasser: Joiner, William J, Friedman, Eliot B, Hung, Hsiao-Tung, Koh, Kyunghee, Sowcik, Mallory, Sehgal, Amita, Kelz, Max B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1003605
container_issue 9
container_start_page e1003605
container_title PLoS genetics
container_volume 9
creator Joiner, William J
Friedman, Eliot B
Hung, Hsiao-Tung
Koh, Kyunghee
Sowcik, Mallory
Sehgal, Amita
Kelz, Max B
description A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states.
doi_str_mv 10.1371/journal.pgen.1003605
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1442463413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A348216840</galeid><doaj_id>oai_doaj_org_article_160fcb5eaf8b438596ebc72b573569e1</doaj_id><sourcerecordid>A348216840</sourcerecordid><originalsourceid>FETCH-LOGICAL-c764t-8f621d58532a4c7d91936e1429ec6d57d279b2186f259338090aaf7f05cecb3e3</originalsourceid><addsrcrecordid>eNqVk12L1DAUhoso7jr6D0QLgujFjEnz0eZGWBZdBxYX_LoNaXrSydhJZpN21X9v6nSXKXihlNA2ed43J-fkZNlTjFaYlPjN1g_BqW61b8GtMEKEI3YvO8WMkWVJEb1_9H2SPYpxmxhWifJhdlJQRAQT6DTbXoCD3upcuSYN1fud1arLaxVtzL3J-w2knxAshDzCXgXVW9fmP9R3MEPnIMZJCjGhyWlpXTNoaPLBBYh776K9gZF7nD0wqovwZHovsq_v3305_7C8vLpYn59dLnXJab-sDC9wwypGCkV12QgsCAdMCwGaN6xsilLUBa64KZggpEICKWVKg5gGXRMgi-z5wXff-SinNEWJKS0oJxSTRKwPROPVVu6D3anwS3pl5Z8JH1qpQjpKBxJzZHTNQJmqpqRigkOty6JmJWFcAE5eb6fdhnoHjQbXB9XNTOcrzm5k628kSadNMSWDV5NB8NdDyqLc2aih61JK_TDGTUjBRVWOe704oK1KoVlnfHLUIy7PCK0KzKtU2EW2-guVngZSbb0DY9P8TPB6JkhMDz_7Vg0xyvXnT__Bfvx39urbnH15xG5Adf0m-m7obbpAc5AeQB18jAHMXaoxkmNj3FZcjo0hp8ZIsmfHZboT3XYC-Q2KKAkS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1433269871</pqid></control><display><type>article</type><title>Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Joiner, William J ; Friedman, Eliot B ; Hung, Hsiao-Tung ; Koh, Kyunghee ; Sowcik, Mallory ; Sehgal, Amita ; Kelz, Max B</creator><contributor>Maze, Mervyn</contributor><creatorcontrib>Joiner, William J ; Friedman, Eliot B ; Hung, Hsiao-Tung ; Koh, Kyunghee ; Sowcik, Mallory ; Sehgal, Amita ; Kelz, Max B ; Maze, Mervyn</creatorcontrib><description>A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1003605</identifier><identifier>PMID: 24039590</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anesthesia ; Anesthetics ; Animals ; Arousal - genetics ; Arousal - physiology ; Behavior ; Brain - metabolism ; Brain - physiology ; Circadian Rhythm - physiology ; Coma ; Drosophila melanogaster - genetics ; Drosophila melanogaster - physiology ; Drosophila Proteins - genetics ; Genetic engineering ; Genetic research ; Homeostasis ; Homeostasis - physiology ; Humans ; Ion Channels - genetics ; Membrane Proteins - genetics ; Mutation ; Neurons - metabolism ; Properties ; Shaker Superfamily of Potassium Channels - genetics ; Sleep ; Sleep - genetics ; Sleep-wake cycle ; Studies ; Wakefulness ; Wakefulness - genetics</subject><ispartof>PLoS genetics, 2013-09, Vol.9 (9), p.e1003605-e1003605</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Joiner et al 2013 Joiner et al</rights><rights>2013 Joiner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Joiner WJ, Friedman EB, Hung H-T, Koh K, Sowcik M, et al. (2013) Genetic and Anatomical Basis of the Barrier Separating Wakefulness and Anesthetic-Induced Unresponsiveness. PLoS Genet 9(9): e1003605. doi:10.1371/journal.pgen.1003605</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c764t-8f621d58532a4c7d91936e1429ec6d57d279b2186f259338090aaf7f05cecb3e3</citedby><cites>FETCH-LOGICAL-c764t-8f621d58532a4c7d91936e1429ec6d57d279b2186f259338090aaf7f05cecb3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764144/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3764144/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24039590$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Maze, Mervyn</contributor><creatorcontrib>Joiner, William J</creatorcontrib><creatorcontrib>Friedman, Eliot B</creatorcontrib><creatorcontrib>Hung, Hsiao-Tung</creatorcontrib><creatorcontrib>Koh, Kyunghee</creatorcontrib><creatorcontrib>Sowcik, Mallory</creatorcontrib><creatorcontrib>Sehgal, Amita</creatorcontrib><creatorcontrib>Kelz, Max B</creatorcontrib><title>Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states.</description><subject>Anesthesia</subject><subject>Anesthetics</subject><subject>Animals</subject><subject>Arousal - genetics</subject><subject>Arousal - physiology</subject><subject>Behavior</subject><subject>Brain - metabolism</subject><subject>Brain - physiology</subject><subject>Circadian Rhythm - physiology</subject><subject>Coma</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - physiology</subject><subject>Drosophila Proteins - genetics</subject><subject>Genetic engineering</subject><subject>Genetic research</subject><subject>Homeostasis</subject><subject>Homeostasis - physiology</subject><subject>Humans</subject><subject>Ion Channels - genetics</subject><subject>Membrane Proteins - genetics</subject><subject>Mutation</subject><subject>Neurons - metabolism</subject><subject>Properties</subject><subject>Shaker Superfamily of Potassium Channels - genetics</subject><subject>Sleep</subject><subject>Sleep - genetics</subject><subject>Sleep-wake cycle</subject><subject>Studies</subject><subject>Wakefulness</subject><subject>Wakefulness - genetics</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNqVk12L1DAUhoso7jr6D0QLgujFjEnz0eZGWBZdBxYX_LoNaXrSydhJZpN21X9v6nSXKXihlNA2ed43J-fkZNlTjFaYlPjN1g_BqW61b8GtMEKEI3YvO8WMkWVJEb1_9H2SPYpxmxhWifJhdlJQRAQT6DTbXoCD3upcuSYN1fud1arLaxVtzL3J-w2knxAshDzCXgXVW9fmP9R3MEPnIMZJCjGhyWlpXTNoaPLBBYh776K9gZF7nD0wqovwZHovsq_v3305_7C8vLpYn59dLnXJab-sDC9wwypGCkV12QgsCAdMCwGaN6xsilLUBa64KZggpEICKWVKg5gGXRMgi-z5wXff-SinNEWJKS0oJxSTRKwPROPVVu6D3anwS3pl5Z8JH1qpQjpKBxJzZHTNQJmqpqRigkOty6JmJWFcAE5eb6fdhnoHjQbXB9XNTOcrzm5k628kSadNMSWDV5NB8NdDyqLc2aih61JK_TDGTUjBRVWOe704oK1KoVlnfHLUIy7PCK0KzKtU2EW2-guVngZSbb0DY9P8TPB6JkhMDz_7Vg0xyvXnT__Bfvx39urbnH15xG5Adf0m-m7obbpAc5AeQB18jAHMXaoxkmNj3FZcjo0hp8ZIsmfHZboT3XYC-Q2KKAkS</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Joiner, William J</creator><creator>Friedman, Eliot B</creator><creator>Hung, Hsiao-Tung</creator><creator>Koh, Kyunghee</creator><creator>Sowcik, Mallory</creator><creator>Sehgal, Amita</creator><creator>Kelz, Max B</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130901</creationdate><title>Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness</title><author>Joiner, William J ; Friedman, Eliot B ; Hung, Hsiao-Tung ; Koh, Kyunghee ; Sowcik, Mallory ; Sehgal, Amita ; Kelz, Max B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c764t-8f621d58532a4c7d91936e1429ec6d57d279b2186f259338090aaf7f05cecb3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anesthesia</topic><topic>Anesthetics</topic><topic>Animals</topic><topic>Arousal - genetics</topic><topic>Arousal - physiology</topic><topic>Behavior</topic><topic>Brain - metabolism</topic><topic>Brain - physiology</topic><topic>Circadian Rhythm - physiology</topic><topic>Coma</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - physiology</topic><topic>Drosophila Proteins - genetics</topic><topic>Genetic engineering</topic><topic>Genetic research</topic><topic>Homeostasis</topic><topic>Homeostasis - physiology</topic><topic>Humans</topic><topic>Ion Channels - genetics</topic><topic>Membrane Proteins - genetics</topic><topic>Mutation</topic><topic>Neurons - metabolism</topic><topic>Properties</topic><topic>Shaker Superfamily of Potassium Channels - genetics</topic><topic>Sleep</topic><topic>Sleep - genetics</topic><topic>Sleep-wake cycle</topic><topic>Studies</topic><topic>Wakefulness</topic><topic>Wakefulness - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joiner, William J</creatorcontrib><creatorcontrib>Friedman, Eliot B</creatorcontrib><creatorcontrib>Hung, Hsiao-Tung</creatorcontrib><creatorcontrib>Koh, Kyunghee</creatorcontrib><creatorcontrib>Sowcik, Mallory</creatorcontrib><creatorcontrib>Sehgal, Amita</creatorcontrib><creatorcontrib>Kelz, Max B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joiner, William J</au><au>Friedman, Eliot B</au><au>Hung, Hsiao-Tung</au><au>Koh, Kyunghee</au><au>Sowcik, Mallory</au><au>Sehgal, Amita</au><au>Kelz, Max B</au><au>Maze, Mervyn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>9</volume><issue>9</issue><spage>e1003605</spage><epage>e1003605</epage><pages>e1003605-e1003605</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>A robust, bistable switch regulates the fluctuations between wakefulness and natural sleep as well as those between wakefulness and anesthetic-induced unresponsiveness. We previously provided experimental evidence for the existence of a behavioral barrier to transitions between these states of arousal, which we call neural inertia. Here we show that neural inertia is controlled by processes that contribute to sleep homeostasis and requires four genes involved in electrical excitability: Sh, sss, na and unc79. Although loss of function mutations in these genes can increase or decrease sensitivity to anesthesia induction, surprisingly, they all collapse neural inertia. These effects are genetically selective: neural inertia is not perturbed by loss-of-function mutations in all genes required for the sleep/wake cycle. These effects are also anatomically selective: sss acts in different neurons to influence arousal-promoting and arousal-suppressing processes underlying neural inertia. Supporting the idea that anesthesia and sleep share some, but not all, genetic and anatomical arousal-regulating pathways, we demonstrate that increasing homeostatic sleep drive widens the neural inertial barrier. We propose that processes selectively contributing to sleep homeostasis and neural inertia may be impaired in pathophysiological conditions such as coma and persistent vegetative states.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24039590</pmid><doi>10.1371/journal.pgen.1003605</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2013-09, Vol.9 (9), p.e1003605-e1003605
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_1442463413
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Anesthesia
Anesthetics
Animals
Arousal - genetics
Arousal - physiology
Behavior
Brain - metabolism
Brain - physiology
Circadian Rhythm - physiology
Coma
Drosophila melanogaster - genetics
Drosophila melanogaster - physiology
Drosophila Proteins - genetics
Genetic engineering
Genetic research
Homeostasis
Homeostasis - physiology
Humans
Ion Channels - genetics
Membrane Proteins - genetics
Mutation
Neurons - metabolism
Properties
Shaker Superfamily of Potassium Channels - genetics
Sleep
Sleep - genetics
Sleep-wake cycle
Studies
Wakefulness
Wakefulness - genetics
title Genetic and anatomical basis of the barrier separating wakefulness and anesthetic-induced unresponsiveness
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T06%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20and%20anatomical%20basis%20of%20the%20barrier%20separating%20wakefulness%20and%20anesthetic-induced%20unresponsiveness&rft.jtitle=PLoS%20genetics&rft.au=Joiner,%20William%20J&rft.date=2013-09-01&rft.volume=9&rft.issue=9&rft.spage=e1003605&rft.epage=e1003605&rft.pages=e1003605-e1003605&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1003605&rft_dat=%3Cgale_plos_%3EA348216840%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1433269871&rft_id=info:pmid/24039590&rft_galeid=A348216840&rft_doaj_id=oai_doaj_org_article_160fcb5eaf8b438596ebc72b573569e1&rfr_iscdi=true