Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues

Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-10, Vol.8 (10), p.e76946-e76946
Hauptverfasser: Cao, Heping, Shockey, Jay M, Klasson, K Thomas, Chapital, Dorselyn C, Mason, Catherine B, Scheffler, Brian E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e76946
container_issue 10
container_start_page e76946
container_title PloS one
container_volume 8
creator Cao, Heping
Shockey, Jay M
Klasson, K Thomas
Chapital, Dorselyn C
Mason, Catherine B
Scheffler, Brian E
description Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.
doi_str_mv 10.1371/journal.pone.0076946
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1441432753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478321385</galeid><doaj_id>oai_doaj_org_article_8e1143ac27e744dcb870ae6decef2ee0</doaj_id><sourcerecordid>A478321385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d3c6a0e5b4ed4733bec3cf860f2ce0704ddd10fd2ed57634ce390ea62aa2ef883</originalsourceid><addsrcrecordid>eNqNk0tr3DAUhU1padK0_6C0hkJpFzOVLVmyN4WQvgYCgb62QiNdeTTI1lSSQ-bfV844YVyyKF7Ylr9z5Ht0b5a9LNCywKz4sHWD74Vd7lwPS4QYbQh9lJ0WDS4XtET48dHzSfYshC1CFa4pfZqdlKQgiSenmf4E12DdroM-Cpt7aAcronF97nSujJB729q9BO9sPr5EL_qgwYsAuRadsfu8hR5yuNl5CGEUmj6PQ9_m0QPk0YQwQHiePdHCBngx3c-yX18-_7z4tri8-rq6OL9cSNqUcaGwpAJBtSagCMN4DRJLXVOkSwmIIaKUKpBWJaiKUUwk4AaBoKUQJei6xmfZ64PvzrrAp4gCL0gqGJeswolYHQjlxJbvvOmE33MnDL9dcL7lwkcjLfAaiqQSsmTACFFyXTMkgCqQoEsAlLw-TrsN6w6UTBl6YWem8y-92fDWXXPMmopWo8G7ycC7PymmyDsTJFgrenDD7X8TnA6RNQl98w_6cHUT1YpUgOm1S_vK0ZSfE1bjssB1lajlA1S6FHRGpn7SJq3PBO9ngsREuImtGELgqx_f_5-9-j1n3x6xGxA2boKzw9iAYQ6SAyi9C8GDvg-5QHwch7s0-DgOfBqHJHt1fED3orv-x38BPQkIlg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441432753</pqid></control><display><type>article</type><title>Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Cao, Heping ; Shockey, Jay M ; Klasson, K Thomas ; Chapital, Dorselyn C ; Mason, Catherine B ; Scheffler, Brian E</creator><contributor>Virolle, Marie-Joelle</contributor><creatorcontrib>Cao, Heping ; Shockey, Jay M ; Klasson, K Thomas ; Chapital, Dorselyn C ; Mason, Catherine B ; Scheffler, Brian E ; Virolle, Marie-Joelle</creatorcontrib><description>Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0076946</identifier><identifier>PMID: 24146944</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acyltransferase ; Agriculture ; Aleurites - classification ; Aleurites - genetics ; Aleurites - metabolism ; Amino Acid Motifs ; Amino Acid Sequence ; Amino acids ; Arabidopsis thaliana ; Biosynthesis ; Cloning ; Cloning, Molecular ; Commodities ; Conserved Sequence ; Cytochrome ; Deoxyribonucleic acid ; Diacylglycerol ; Diacylglycerol O-acyltransferase ; Diacylglycerol O-Acyltransferase - chemistry ; Diacylglycerol O-Acyltransferase - genetics ; Diacylglycerol O-Acyltransferase - metabolism ; Diglycerides ; DNA ; Enzymes ; Eukaryotes ; Euonymus alatus ; Fatty acids ; Flowers ; Flowers - genetics ; Flowers - metabolism ; Gene expression ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; Genes ; Genetic engineering ; Genetically engineered organisms ; Industrial applications ; Isoforms ; Leaves ; Lipids ; Metabolism ; Molecular Sequence Data ; Multigene Family ; Oil ; Oils &amp; fats ; Oilseeds ; Organ Specificity ; Organisms ; Petroleum engineering ; Phylogeny ; Plant Leaves - genetics ; Plant Leaves - metabolism ; Plant Oils - metabolism ; Plant tissues ; Proteins ; RNA ; Saccharomyces cerevisiae ; Seeds ; Seeds - genetics ; Seeds - metabolism ; Sequence Alignment ; Transferases ; Transgenic organisms ; Trees ; Triglycerides ; Western blotting ; Yeast</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e76946-e76946</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d3c6a0e5b4ed4733bec3cf860f2ce0704ddd10fd2ed57634ce390ea62aa2ef883</citedby><cites>FETCH-LOGICAL-c692t-d3c6a0e5b4ed4733bec3cf860f2ce0704ddd10fd2ed57634ce390ea62aa2ef883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795650/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795650/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24146944$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Virolle, Marie-Joelle</contributor><creatorcontrib>Cao, Heping</creatorcontrib><creatorcontrib>Shockey, Jay M</creatorcontrib><creatorcontrib>Klasson, K Thomas</creatorcontrib><creatorcontrib>Chapital, Dorselyn C</creatorcontrib><creatorcontrib>Mason, Catherine B</creatorcontrib><creatorcontrib>Scheffler, Brian E</creatorcontrib><title>Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.</description><subject>Acyltransferase</subject><subject>Agriculture</subject><subject>Aleurites - classification</subject><subject>Aleurites - genetics</subject><subject>Aleurites - metabolism</subject><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Arabidopsis thaliana</subject><subject>Biosynthesis</subject><subject>Cloning</subject><subject>Cloning, Molecular</subject><subject>Commodities</subject><subject>Conserved Sequence</subject><subject>Cytochrome</subject><subject>Deoxyribonucleic acid</subject><subject>Diacylglycerol</subject><subject>Diacylglycerol O-acyltransferase</subject><subject>Diacylglycerol O-Acyltransferase - chemistry</subject><subject>Diacylglycerol O-Acyltransferase - genetics</subject><subject>Diacylglycerol O-Acyltransferase - metabolism</subject><subject>Diglycerides</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Eukaryotes</subject><subject>Euonymus alatus</subject><subject>Fatty acids</subject><subject>Flowers</subject><subject>Flowers - genetics</subject><subject>Flowers - metabolism</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Enzymologic</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>Genetically engineered organisms</subject><subject>Industrial applications</subject><subject>Isoforms</subject><subject>Leaves</subject><subject>Lipids</subject><subject>Metabolism</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family</subject><subject>Oil</subject><subject>Oils &amp; fats</subject><subject>Oilseeds</subject><subject>Organ Specificity</subject><subject>Organisms</subject><subject>Petroleum engineering</subject><subject>Phylogeny</subject><subject>Plant Leaves - genetics</subject><subject>Plant Leaves - metabolism</subject><subject>Plant Oils - metabolism</subject><subject>Plant tissues</subject><subject>Proteins</subject><subject>RNA</subject><subject>Saccharomyces cerevisiae</subject><subject>Seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - metabolism</subject><subject>Sequence Alignment</subject><subject>Transferases</subject><subject>Transgenic organisms</subject><subject>Trees</subject><subject>Triglycerides</subject><subject>Western blotting</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tr3DAUhU1padK0_6C0hkJpFzOVLVmyN4WQvgYCgb62QiNdeTTI1lSSQ-bfV844YVyyKF7Ylr9z5Ht0b5a9LNCywKz4sHWD74Vd7lwPS4QYbQh9lJ0WDS4XtET48dHzSfYshC1CFa4pfZqdlKQgiSenmf4E12DdroM-Cpt7aAcronF97nSujJB729q9BO9sPr5EL_qgwYsAuRadsfu8hR5yuNl5CGEUmj6PQ9_m0QPk0YQwQHiePdHCBngx3c-yX18-_7z4tri8-rq6OL9cSNqUcaGwpAJBtSagCMN4DRJLXVOkSwmIIaKUKpBWJaiKUUwk4AaBoKUQJei6xmfZ64PvzrrAp4gCL0gqGJeswolYHQjlxJbvvOmE33MnDL9dcL7lwkcjLfAaiqQSsmTACFFyXTMkgCqQoEsAlLw-TrsN6w6UTBl6YWem8y-92fDWXXPMmopWo8G7ycC7PymmyDsTJFgrenDD7X8TnA6RNQl98w_6cHUT1YpUgOm1S_vK0ZSfE1bjssB1lajlA1S6FHRGpn7SJq3PBO9ngsREuImtGELgqx_f_5-9-j1n3x6xGxA2boKzw9iAYQ6SAyi9C8GDvg-5QHwch7s0-DgOfBqHJHt1fED3orv-x38BPQkIlg</recordid><startdate>20131011</startdate><enddate>20131011</enddate><creator>Cao, Heping</creator><creator>Shockey, Jay M</creator><creator>Klasson, K Thomas</creator><creator>Chapital, Dorselyn C</creator><creator>Mason, Catherine B</creator><creator>Scheffler, Brian E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131011</creationdate><title>Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues</title><author>Cao, Heping ; Shockey, Jay M ; Klasson, K Thomas ; Chapital, Dorselyn C ; Mason, Catherine B ; Scheffler, Brian E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d3c6a0e5b4ed4733bec3cf860f2ce0704ddd10fd2ed57634ce390ea62aa2ef883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acyltransferase</topic><topic>Agriculture</topic><topic>Aleurites - classification</topic><topic>Aleurites - genetics</topic><topic>Aleurites - metabolism</topic><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Arabidopsis thaliana</topic><topic>Biosynthesis</topic><topic>Cloning</topic><topic>Cloning, Molecular</topic><topic>Commodities</topic><topic>Conserved Sequence</topic><topic>Cytochrome</topic><topic>Deoxyribonucleic acid</topic><topic>Diacylglycerol</topic><topic>Diacylglycerol O-acyltransferase</topic><topic>Diacylglycerol O-Acyltransferase - chemistry</topic><topic>Diacylglycerol O-Acyltransferase - genetics</topic><topic>Diacylglycerol O-Acyltransferase - metabolism</topic><topic>Diglycerides</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Eukaryotes</topic><topic>Euonymus alatus</topic><topic>Fatty acids</topic><topic>Flowers</topic><topic>Flowers - genetics</topic><topic>Flowers - metabolism</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Enzymologic</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>Genetically engineered organisms</topic><topic>Industrial applications</topic><topic>Isoforms</topic><topic>Leaves</topic><topic>Lipids</topic><topic>Metabolism</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family</topic><topic>Oil</topic><topic>Oils &amp; fats</topic><topic>Oilseeds</topic><topic>Organ Specificity</topic><topic>Organisms</topic><topic>Petroleum engineering</topic><topic>Phylogeny</topic><topic>Plant Leaves - genetics</topic><topic>Plant Leaves - metabolism</topic><topic>Plant Oils - metabolism</topic><topic>Plant tissues</topic><topic>Proteins</topic><topic>RNA</topic><topic>Saccharomyces cerevisiae</topic><topic>Seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - metabolism</topic><topic>Sequence Alignment</topic><topic>Transferases</topic><topic>Transgenic organisms</topic><topic>Trees</topic><topic>Triglycerides</topic><topic>Western blotting</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Heping</creatorcontrib><creatorcontrib>Shockey, Jay M</creatorcontrib><creatorcontrib>Klasson, K Thomas</creatorcontrib><creatorcontrib>Chapital, Dorselyn C</creatorcontrib><creatorcontrib>Mason, Catherine B</creatorcontrib><creatorcontrib>Scheffler, Brian E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Heping</au><au>Shockey, Jay M</au><au>Klasson, K Thomas</au><au>Chapital, Dorselyn C</au><au>Mason, Catherine B</au><au>Scheffler, Brian E</au><au>Virolle, Marie-Joelle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-11</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e76946</spage><epage>e76946</epage><pages>e76946-e76946</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Diacylglycerol acyltransferases (DGAT) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. DGAT genes have been identified in numerous organisms. Multiple isoforms of DGAT are present in eukaryotes. We previously cloned DGAT1 and DGAT2 genes of tung tree (Vernicia fordii), whose novel seed TAGs are useful in a wide range of industrial applications. The objective of this study was to understand the developmental regulation of DGAT family gene expression in tung tree. To this end, we first cloned a tung tree gene encoding DGAT3, a putatively soluble form of DGAT that possesses 11 completely conserved amino acid residues shared among 27 DGAT3s from 19 plant species. Unlike DGAT1 and DGAT2 subfamilies, DGAT3 is absent from animals. We then used TaqMan and SYBR Green quantitative real-time PCR, along with northern and western blotting, to study the expression patterns of the three DGAT genes in tung tree tissues. Expression results demonstrate that 1) all three isoforms of DGAT genes are expressed in developing seeds, leaves and flowers; 2) DGAT2 is the major DGAT mRNA in tung seeds, whose expression profile is well-coordinated with the oil profile in developing tung seeds; and 3) DGAT3 is the major form of DGAT mRNA in tung leaves, flowers and immature seeds prior to active tung oil biosynthesis. These results suggest that DGAT2 is probably the major TAG biosynthetic isoform in tung seeds and that DGAT3 gene likely plays a significant role in TAG metabolism in other tissues. Therefore, DGAT2 should be a primary target for tung oil engineering in transgenic organisms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24146944</pmid><doi>10.1371/journal.pone.0076946</doi><tpages>e76946</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-10, Vol.8 (10), p.e76946-e76946
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1441432753
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Acyltransferase
Agriculture
Aleurites - classification
Aleurites - genetics
Aleurites - metabolism
Amino Acid Motifs
Amino Acid Sequence
Amino acids
Arabidopsis thaliana
Biosynthesis
Cloning
Cloning, Molecular
Commodities
Conserved Sequence
Cytochrome
Deoxyribonucleic acid
Diacylglycerol
Diacylglycerol O-acyltransferase
Diacylglycerol O-Acyltransferase - chemistry
Diacylglycerol O-Acyltransferase - genetics
Diacylglycerol O-Acyltransferase - metabolism
Diglycerides
DNA
Enzymes
Eukaryotes
Euonymus alatus
Fatty acids
Flowers
Flowers - genetics
Flowers - metabolism
Gene expression
Gene Expression Regulation, Developmental
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Plant
Genes
Genetic engineering
Genetically engineered organisms
Industrial applications
Isoforms
Leaves
Lipids
Metabolism
Molecular Sequence Data
Multigene Family
Oil
Oils & fats
Oilseeds
Organ Specificity
Organisms
Petroleum engineering
Phylogeny
Plant Leaves - genetics
Plant Leaves - metabolism
Plant Oils - metabolism
Plant tissues
Proteins
RNA
Saccharomyces cerevisiae
Seeds
Seeds - genetics
Seeds - metabolism
Sequence Alignment
Transferases
Transgenic organisms
Trees
Triglycerides
Western blotting
Yeast
title Developmental regulation of diacylglycerol acyltransferase family gene expression in tung tree tissues
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developmental%20regulation%20of%20diacylglycerol%20acyltransferase%20family%20gene%20expression%20in%20tung%20tree%20tissues&rft.jtitle=PloS%20one&rft.au=Cao,%20Heping&rft.date=2013-10-11&rft.volume=8&rft.issue=10&rft.spage=e76946&rft.epage=e76946&rft.pages=e76946-e76946&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0076946&rft_dat=%3Cgale_plos_%3EA478321385%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441432753&rft_id=info:pmid/24146944&rft_galeid=A478321385&rft_doaj_id=oai_doaj_org_article_8e1143ac27e744dcb870ae6decef2ee0&rfr_iscdi=true