Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction

Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-10, Vol.8 (10), p.e77129-e77129
Hauptverfasser: Srinivasan, Satish, Spear, Joseph, Chandran, Karunakaran, Joseph, Joy, Kalyanaraman, Balaraman, Avadhani, Narayan G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e77129
container_issue 10
container_start_page e77129
container_title PloS one
container_volume 8
creator Srinivasan, Satish
Spear, Joseph
Chandran, Karunakaran
Joseph, Joy
Kalyanaraman, Balaraman
Avadhani, Narayan G
description Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS.
doi_str_mv 10.1371/journal.pone.0077129
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1441281106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478335402</galeid><doaj_id>oai_doaj_org_article_e2997e21a0e34f5a99eee5fe97cad1ad</doaj_id><sourcerecordid>A478335402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-fa6b972262a1637428fd69c1bc4538bebc92a8583296a49ea228ff10e008b8333</originalsourceid><addsrcrecordid>eNqNk9uK2zAQhk1p6W63fYPSGgqlvUiqkw-6KYSlh8BCoKdbMZbHiVLHSiV52bx95Y13icteFF1ISN_8Gv2aSZKXlMwpL-iHre1dB-18bzucE1IUlMlHyTmVnM1yRvjjk_VZ8sz7LSEZL_P8aXLGBOWkFOI8gdWNqSGYa0x9cOh9arq611inOxOs3tiudgbadO9sQNOlv00HHtNFusPaQECf6sPAObvDVKd2UIvn9cE3faeDsd3z5EkDrccX43yR_Pz86cfl19nV6svycnE107lkYdZAXsmCsZwBzXkhWNnUudS00iJmXWGlJYMyKzmTOQiJwCLRUIKElFXJOb9IXh919631anTHKyoEZSWlJI_E8kjUFrZq78wO3EFZMOp2w7q1AheMblEhk7JARoEgF00GUiJi1qAsNNQU6qj1cbytr6IVGrvgoJ2ITk86s1Fre614ITNChnTfjQLO_unRB7UzXmPbQoe2v82bS8lzSSP65h_04deN1BriA0zX2HivHkTVQhTRoUwQFqn5A1QcNe6MjqXUmLg_CXg_CYhMwJuwht57tfz-7f_Z1a8p-_aE3SC0YeNt2w8l46egOILaWe8dNvcmU6KGTrhzQw2doMZOiGGvTj_oPuiu9Plf6hwEZg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441281106</pqid></control><display><type>article</type><title>Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Srinivasan, Satish ; Spear, Joseph ; Chandran, Karunakaran ; Joseph, Joy ; Kalyanaraman, Balaraman ; Avadhani, Narayan G</creator><contributor>Bai, Yidong</contributor><creatorcontrib>Srinivasan, Satish ; Spear, Joseph ; Chandran, Karunakaran ; Joseph, Joy ; Kalyanaraman, Balaraman ; Avadhani, Narayan G ; Bai, Yidong</creatorcontrib><description>Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0077129</identifier><identifier>PMID: 24130844</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Activation ; Adenylate cyclase ; Animals ; Antioxidants ; Antioxidants - pharmacology ; Biology ; Biophysics ; Cardiology ; Catalysis ; Cell Hypoxia - drug effects ; Cell Line ; Cell Respiration - drug effects ; Cyclic adenosine monophosphate ; Cyclic AMP ; Cyclic AMP-Dependent Protein Kinases - metabolism ; Cytochrome ; Cytochrome c ; Cytochrome oxidase ; Cytochrome-c oxidase ; Electron Transport Complex IV - genetics ; Electron Transport Complex IV - metabolism ; Endoplasmic reticulum ; Enzyme Activation - drug effects ; Enzymes ; Fractionation ; Free radicals ; Heart ; Hypoxia ; Inhibitors ; Ischemia ; Kinases ; Macrophages ; Mice ; Mitochondria ; Mitochondria - drug effects ; Mitochondria - enzymology ; Mitochondria - metabolism ; Mutation ; Myocardial ischemia ; Myocardial Ischemia - enzymology ; Myocardial Ischemia - metabolism ; Myocardial Ischemia - pathology ; Oncology ; Oxidase ; Oxidative stress ; Oxidative Stress - drug effects ; Oxygen ; Phosphorylation ; Phosphorylation - drug effects ; Physiology ; Proteases ; Protein kinase A ; Protein kinases ; Protein Subunits - genetics ; Protein Subunits - metabolism ; Protein Transport - drug effects ; Proteins ; Proteolysis - drug effects ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; Reperfusion ; Reperfusion Injury - enzymology ; Reperfusion Injury - metabolism ; Reperfusion Injury - pathology ; Rodents ; Veterinary colleges ; Veterinary medicine</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e77129-e77129</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Srinivasan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Srinivasan et al 2013 Srinivasan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-fa6b972262a1637428fd69c1bc4538bebc92a8583296a49ea228ff10e008b8333</citedby><cites>FETCH-LOGICAL-c692t-fa6b972262a1637428fd69c1bc4538bebc92a8583296a49ea228ff10e008b8333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795003/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795003/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24130844$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bai, Yidong</contributor><creatorcontrib>Srinivasan, Satish</creatorcontrib><creatorcontrib>Spear, Joseph</creatorcontrib><creatorcontrib>Chandran, Karunakaran</creatorcontrib><creatorcontrib>Joseph, Joy</creatorcontrib><creatorcontrib>Kalyanaraman, Balaraman</creatorcontrib><creatorcontrib>Avadhani, Narayan G</creatorcontrib><title>Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS.</description><subject>Activation</subject><subject>Adenylate cyclase</subject><subject>Animals</subject><subject>Antioxidants</subject><subject>Antioxidants - pharmacology</subject><subject>Biology</subject><subject>Biophysics</subject><subject>Cardiology</subject><subject>Catalysis</subject><subject>Cell Hypoxia - drug effects</subject><subject>Cell Line</subject><subject>Cell Respiration - drug effects</subject><subject>Cyclic adenosine monophosphate</subject><subject>Cyclic AMP</subject><subject>Cyclic AMP-Dependent Protein Kinases - metabolism</subject><subject>Cytochrome</subject><subject>Cytochrome c</subject><subject>Cytochrome oxidase</subject><subject>Cytochrome-c oxidase</subject><subject>Electron Transport Complex IV - genetics</subject><subject>Electron Transport Complex IV - metabolism</subject><subject>Endoplasmic reticulum</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzymes</subject><subject>Fractionation</subject><subject>Free radicals</subject><subject>Heart</subject><subject>Hypoxia</subject><subject>Inhibitors</subject><subject>Ischemia</subject><subject>Kinases</subject><subject>Macrophages</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondria - drug effects</subject><subject>Mitochondria - enzymology</subject><subject>Mitochondria - metabolism</subject><subject>Mutation</subject><subject>Myocardial ischemia</subject><subject>Myocardial Ischemia - enzymology</subject><subject>Myocardial Ischemia - metabolism</subject><subject>Myocardial Ischemia - pathology</subject><subject>Oncology</subject><subject>Oxidase</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>Oxygen</subject><subject>Phosphorylation</subject><subject>Phosphorylation - drug effects</subject><subject>Physiology</subject><subject>Proteases</subject><subject>Protein kinase A</subject><subject>Protein kinases</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>Protein Transport - drug effects</subject><subject>Proteins</subject><subject>Proteolysis - drug effects</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Reperfusion</subject><subject>Reperfusion Injury - enzymology</subject><subject>Reperfusion Injury - metabolism</subject><subject>Reperfusion Injury - pathology</subject><subject>Rodents</subject><subject>Veterinary colleges</subject><subject>Veterinary medicine</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uK2zAQhk1p6W63fYPSGgqlvUiqkw-6KYSlh8BCoKdbMZbHiVLHSiV52bx95Y13icteFF1ISN_8Gv2aSZKXlMwpL-iHre1dB-18bzucE1IUlMlHyTmVnM1yRvjjk_VZ8sz7LSEZL_P8aXLGBOWkFOI8gdWNqSGYa0x9cOh9arq611inOxOs3tiudgbadO9sQNOlv00HHtNFusPaQECf6sPAObvDVKd2UIvn9cE3faeDsd3z5EkDrccX43yR_Pz86cfl19nV6svycnE107lkYdZAXsmCsZwBzXkhWNnUudS00iJmXWGlJYMyKzmTOQiJwCLRUIKElFXJOb9IXh919631anTHKyoEZSWlJI_E8kjUFrZq78wO3EFZMOp2w7q1AheMblEhk7JARoEgF00GUiJi1qAsNNQU6qj1cbytr6IVGrvgoJ2ITk86s1Fre614ITNChnTfjQLO_unRB7UzXmPbQoe2v82bS8lzSSP65h_04deN1BriA0zX2HivHkTVQhTRoUwQFqn5A1QcNe6MjqXUmLg_CXg_CYhMwJuwht57tfz-7f_Z1a8p-_aE3SC0YeNt2w8l46egOILaWe8dNvcmU6KGTrhzQw2doMZOiGGvTj_oPuiu9Plf6hwEZg</recordid><startdate>20131010</startdate><enddate>20131010</enddate><creator>Srinivasan, Satish</creator><creator>Spear, Joseph</creator><creator>Chandran, Karunakaran</creator><creator>Joseph, Joy</creator><creator>Kalyanaraman, Balaraman</creator><creator>Avadhani, Narayan G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131010</creationdate><title>Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction</title><author>Srinivasan, Satish ; Spear, Joseph ; Chandran, Karunakaran ; Joseph, Joy ; Kalyanaraman, Balaraman ; Avadhani, Narayan G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-fa6b972262a1637428fd69c1bc4538bebc92a8583296a49ea228ff10e008b8333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation</topic><topic>Adenylate cyclase</topic><topic>Animals</topic><topic>Antioxidants</topic><topic>Antioxidants - pharmacology</topic><topic>Biology</topic><topic>Biophysics</topic><topic>Cardiology</topic><topic>Catalysis</topic><topic>Cell Hypoxia - drug effects</topic><topic>Cell Line</topic><topic>Cell Respiration - drug effects</topic><topic>Cyclic adenosine monophosphate</topic><topic>Cyclic AMP</topic><topic>Cyclic AMP-Dependent Protein Kinases - metabolism</topic><topic>Cytochrome</topic><topic>Cytochrome c</topic><topic>Cytochrome oxidase</topic><topic>Cytochrome-c oxidase</topic><topic>Electron Transport Complex IV - genetics</topic><topic>Electron Transport Complex IV - metabolism</topic><topic>Endoplasmic reticulum</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzymes</topic><topic>Fractionation</topic><topic>Free radicals</topic><topic>Heart</topic><topic>Hypoxia</topic><topic>Inhibitors</topic><topic>Ischemia</topic><topic>Kinases</topic><topic>Macrophages</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondria - drug effects</topic><topic>Mitochondria - enzymology</topic><topic>Mitochondria - metabolism</topic><topic>Mutation</topic><topic>Myocardial ischemia</topic><topic>Myocardial Ischemia - enzymology</topic><topic>Myocardial Ischemia - metabolism</topic><topic>Myocardial Ischemia - pathology</topic><topic>Oncology</topic><topic>Oxidase</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>Oxygen</topic><topic>Phosphorylation</topic><topic>Phosphorylation - drug effects</topic><topic>Physiology</topic><topic>Proteases</topic><topic>Protein kinase A</topic><topic>Protein kinases</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>Protein Transport - drug effects</topic><topic>Proteins</topic><topic>Proteolysis - drug effects</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Reperfusion</topic><topic>Reperfusion Injury - enzymology</topic><topic>Reperfusion Injury - metabolism</topic><topic>Reperfusion Injury - pathology</topic><topic>Rodents</topic><topic>Veterinary colleges</topic><topic>Veterinary medicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Srinivasan, Satish</creatorcontrib><creatorcontrib>Spear, Joseph</creatorcontrib><creatorcontrib>Chandran, Karunakaran</creatorcontrib><creatorcontrib>Joseph, Joy</creatorcontrib><creatorcontrib>Kalyanaraman, Balaraman</creatorcontrib><creatorcontrib>Avadhani, Narayan G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srinivasan, Satish</au><au>Spear, Joseph</au><au>Chandran, Karunakaran</au><au>Joseph, Joy</au><au>Kalyanaraman, Balaraman</au><au>Avadhani, Narayan G</au><au>Bai, Yidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-10</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e77129</spage><epage>e77129</epage><pages>e77129-e77129</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Previously we showed that Protein kinase A (PKA) activated in hypoxia and myocardial ischemia/reperfusion mediates phosphorylation of subunits I, IVi1 and Vb of cytochrome c oxidase. However, the mechanism of activation of the kinase under hypoxia remains unclear. It is also unclear if hypoxic stress activated PKA is different from the cAMP dependent mitochondrial PKA activity reported under normal physiological conditions. In this study using RAW 264.7 macrophages and in vitro perfused mouse heart system we investigated the nature of PKA activated under hypoxia. Limited protease treatment and digitonin fractionation of intact mitochondria suggests that higher mitochondrial PKA activity under hypoxia is mainly due to increased sequestration of PKA Catalytic α (PKAα) subunit in the mitochondrial matrix compartment. The increase in PKA activity is independent of mitochondrial cAMP and is not inhibited by adenylate cyclase inhibitor, KH7. Instead, activation of hypoxia-induced PKA is dependent on reactive oxygen species (ROS). H89, an inhibitor of PKA activity and the antioxidant Mito-CP prevented loss of CcO activity in macrophages under hypoxia and in mouse heart under ischemia/reperfusion injury. Substitution of wild type subunit Vb of CcO with phosphorylation resistant S40A mutant subunit attenuated the loss of CcO activity and reduced ROS production. These results provide a compelling evidence for hypoxia induced phosphorylation as a signal for CcO dysfunction. The results also describe a novel mechanism of mitochondrial PKA activation which is independent of mitochondrial cAMP, but responsive to ROS.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24130844</pmid><doi>10.1371/journal.pone.0077129</doi><tpages>e77129</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-10, Vol.8 (10), p.e77129-e77129
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1441281106
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Activation
Adenylate cyclase
Animals
Antioxidants
Antioxidants - pharmacology
Biology
Biophysics
Cardiology
Catalysis
Cell Hypoxia - drug effects
Cell Line
Cell Respiration - drug effects
Cyclic adenosine monophosphate
Cyclic AMP
Cyclic AMP-Dependent Protein Kinases - metabolism
Cytochrome
Cytochrome c
Cytochrome oxidase
Cytochrome-c oxidase
Electron Transport Complex IV - genetics
Electron Transport Complex IV - metabolism
Endoplasmic reticulum
Enzyme Activation - drug effects
Enzymes
Fractionation
Free radicals
Heart
Hypoxia
Inhibitors
Ischemia
Kinases
Macrophages
Mice
Mitochondria
Mitochondria - drug effects
Mitochondria - enzymology
Mitochondria - metabolism
Mutation
Myocardial ischemia
Myocardial Ischemia - enzymology
Myocardial Ischemia - metabolism
Myocardial Ischemia - pathology
Oncology
Oxidase
Oxidative stress
Oxidative Stress - drug effects
Oxygen
Phosphorylation
Phosphorylation - drug effects
Physiology
Proteases
Protein kinase A
Protein kinases
Protein Subunits - genetics
Protein Subunits - metabolism
Protein Transport - drug effects
Proteins
Proteolysis - drug effects
Reactive oxygen species
Reactive Oxygen Species - metabolism
Reperfusion
Reperfusion Injury - enzymology
Reperfusion Injury - metabolism
Reperfusion Injury - pathology
Rodents
Veterinary colleges
Veterinary medicine
title Oxidative stress induced mitochondrial protein kinase A mediates cytochrome c oxidase dysfunction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidative%20stress%20induced%20mitochondrial%20protein%20kinase%20A%20mediates%20cytochrome%20c%20oxidase%20dysfunction&rft.jtitle=PloS%20one&rft.au=Srinivasan,%20Satish&rft.date=2013-10-10&rft.volume=8&rft.issue=10&rft.spage=e77129&rft.epage=e77129&rft.pages=e77129-e77129&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0077129&rft_dat=%3Cgale_plos_%3EA478335402%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441281106&rft_id=info:pmid/24130844&rft_galeid=A478335402&rft_doaj_id=oai_doaj_org_article_e2997e21a0e34f5a99eee5fe97cad1ad&rfr_iscdi=true