Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors

TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-10, Vol.8 (10), p.e76045-e76045
Hauptverfasser: Wan, Hua, Hu, Jian-ping, Li, Kang-shun, Tian, Xu-hong, Chang, Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e76045
container_issue 10
container_start_page e76045
container_title PloS one
container_volume 8
creator Wan, Hua
Hu, Jian-ping
Li, Kang-shun
Tian, Xu-hong
Chang, Shan
description TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.
doi_str_mv 10.1371/journal.pone.0076045
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1441280635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478335446</galeid><doaj_id>oai_doaj_org_article_94794f892bf741ae9a0cadc6fd82d371</doaj_id><sourcerecordid>A478335446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-c534c812ee5dc66cb6ceda520e9e0912db55ffb4303102378dc9a6d3e81992703</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0eLPJL5BqjYGlQqTYHBrOfZxm8qNi52g7d_jttnUoF0gX9g-fs7r4-M3y15iNMW0xB_Wvg-tctOtb2GKUFkgxh9lp1hQMikIoo-P1ifZsxjXCHFaFcXT7IQwTFHJy9Ps8qt3oHunQm5uW7VpdMxjs0mBrvFtzL3NL77NJjYA5Ko1-03t-7S6ni1ysBZ050N8nj2xykV4Mcxn2c_LT9fnXyaLq8_z89lioktedRPNKdMVJgDc6KLQdaHBKE4QCEACE1Nzbm3NKKIYEVpWRgtVGAoVFoKUiJ5lrw-6W-ejHFoQJWYMkwoVlCdifiCMV2u5Dc1GhVvpVSP3AR-WUoWu0Q6kYKVgthKktiXDCoRCWqW6rKmISS1OWh-H2_p6A0ZD2wXlRqLjk7ZZyaX_I2kSFvti3g0Cwf_uIXZy00QNzqkWfL-vmwohkBAJffMP-vDrBmqp0gOa1vp0r96JyhkrK0o5Y0Wipg9QaRhIH5z8YpsUHyW8HyUkpoObbqn6GOX8x_f_Z69-jdm3R-wKlOtW0bt-760xyA6gDj7GAPa-yRjJnd3vuiF3dpeD3VPaq-MPuk-68zf9C0dC-E8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441280635</pqid></control><display><type>article</type><title>Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Wan, Hua ; Hu, Jian-ping ; Li, Kang-shun ; Tian, Xu-hong ; Chang, Shan</creator><creatorcontrib>Wan, Hua ; Hu, Jian-ping ; Li, Kang-shun ; Tian, Xu-hong ; Chang, Shan</creatorcontrib><description>TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0076045</identifier><identifier>PMID: 24130757</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Binding ; Binding proteins ; Binding sites ; Biophysics ; Chemistry ; Conformational analysis ; Crystal structure ; Crystallography ; Deformability ; Deformation mechanisms ; Deoxyribonucleic acid ; DNA ; DNA sequencing ; DNA structure ; DNA-binding protein ; Dynamic structural analysis ; Effectors ; Formability ; Free energy ; Gene expression ; Gene sequencing ; Informatics ; Molecular chains ; Molecular dynamics ; Molecular Dynamics Simulation ; NMR ; Nuclear magnetic resonance ; Nucleotide sequence ; Principal Component Analysis ; Principal components analysis ; Protein binding ; Protein Structure, Secondary ; Proteins ; Recognition ; Simulation ; Superhelical DNA ; Tandem Repeat Sequences - genetics ; Transcription ; Transcription (Genetics)</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e76045-e76045</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Wan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Wan et al 2013 Wan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-c534c812ee5dc66cb6ceda520e9e0912db55ffb4303102378dc9a6d3e81992703</citedby><cites>FETCH-LOGICAL-c758t-c534c812ee5dc66cb6ceda520e9e0912db55ffb4303102378dc9a6d3e81992703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794935/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3794935/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24130757$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wan, Hua</creatorcontrib><creatorcontrib>Hu, Jian-ping</creatorcontrib><creatorcontrib>Li, Kang-shun</creatorcontrib><creatorcontrib>Tian, Xu-hong</creatorcontrib><creatorcontrib>Chang, Shan</creatorcontrib><title>Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.</description><subject>Analysis</subject><subject>Binding</subject><subject>Binding proteins</subject><subject>Binding sites</subject><subject>Biophysics</subject><subject>Chemistry</subject><subject>Conformational analysis</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Deformability</subject><subject>Deformation mechanisms</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA sequencing</subject><subject>DNA structure</subject><subject>DNA-binding protein</subject><subject>Dynamic structural analysis</subject><subject>Effectors</subject><subject>Formability</subject><subject>Free energy</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Informatics</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Nucleotide sequence</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Protein binding</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Recognition</subject><subject>Simulation</subject><subject>Superhelical DNA</subject><subject>Tandem Repeat Sequences - genetics</subject><subject>Transcription</subject><subject>Transcription (Genetics)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1v0zAUhiMEYmPwDxBEQkJw0eLPJL5BqjYGlQqTYHBrOfZxm8qNi52g7d_jttnUoF0gX9g-fs7r4-M3y15iNMW0xB_Wvg-tctOtb2GKUFkgxh9lp1hQMikIoo-P1ifZsxjXCHFaFcXT7IQwTFHJy9Ps8qt3oHunQm5uW7VpdMxjs0mBrvFtzL3NL77NJjYA5Ko1-03t-7S6ni1ysBZ050N8nj2xykV4Mcxn2c_LT9fnXyaLq8_z89lioktedRPNKdMVJgDc6KLQdaHBKE4QCEACE1Nzbm3NKKIYEVpWRgtVGAoVFoKUiJ5lrw-6W-ejHFoQJWYMkwoVlCdifiCMV2u5Dc1GhVvpVSP3AR-WUoWu0Q6kYKVgthKktiXDCoRCWqW6rKmISS1OWh-H2_p6A0ZD2wXlRqLjk7ZZyaX_I2kSFvti3g0Cwf_uIXZy00QNzqkWfL-vmwohkBAJffMP-vDrBmqp0gOa1vp0r96JyhkrK0o5Y0Wipg9QaRhIH5z8YpsUHyW8HyUkpoObbqn6GOX8x_f_Z69-jdm3R-wKlOtW0bt-760xyA6gDj7GAPa-yRjJnd3vuiF3dpeD3VPaq-MPuk-68zf9C0dC-E8</recordid><startdate>20131010</startdate><enddate>20131010</enddate><creator>Wan, Hua</creator><creator>Hu, Jian-ping</creator><creator>Li, Kang-shun</creator><creator>Tian, Xu-hong</creator><creator>Chang, Shan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131010</creationdate><title>Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors</title><author>Wan, Hua ; Hu, Jian-ping ; Li, Kang-shun ; Tian, Xu-hong ; Chang, Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-c534c812ee5dc66cb6ceda520e9e0912db55ffb4303102378dc9a6d3e81992703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Binding</topic><topic>Binding proteins</topic><topic>Binding sites</topic><topic>Biophysics</topic><topic>Chemistry</topic><topic>Conformational analysis</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Deformability</topic><topic>Deformation mechanisms</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA sequencing</topic><topic>DNA structure</topic><topic>DNA-binding protein</topic><topic>Dynamic structural analysis</topic><topic>Effectors</topic><topic>Formability</topic><topic>Free energy</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Informatics</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Nucleotide sequence</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Protein binding</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Recognition</topic><topic>Simulation</topic><topic>Superhelical DNA</topic><topic>Tandem Repeat Sequences - genetics</topic><topic>Transcription</topic><topic>Transcription (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Hua</creatorcontrib><creatorcontrib>Hu, Jian-ping</creatorcontrib><creatorcontrib>Li, Kang-shun</creatorcontrib><creatorcontrib>Tian, Xu-hong</creatorcontrib><creatorcontrib>Chang, Shan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wan, Hua</au><au>Hu, Jian-ping</au><au>Li, Kang-shun</au><au>Tian, Xu-hong</au><au>Chang, Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-10</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e76045</spage><epage>e76045</epage><pages>e76045-e76045</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24130757</pmid><doi>10.1371/journal.pone.0076045</doi><tpages>e76045</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-10, Vol.8 (10), p.e76045-e76045
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1441280635
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Binding
Binding proteins
Binding sites
Biophysics
Chemistry
Conformational analysis
Crystal structure
Crystallography
Deformability
Deformation mechanisms
Deoxyribonucleic acid
DNA
DNA sequencing
DNA structure
DNA-binding protein
Dynamic structural analysis
Effectors
Formability
Free energy
Gene expression
Gene sequencing
Informatics
Molecular chains
Molecular dynamics
Molecular Dynamics Simulation
NMR
Nuclear magnetic resonance
Nucleotide sequence
Principal Component Analysis
Principal components analysis
Protein binding
Protein Structure, Secondary
Proteins
Recognition
Simulation
Superhelical DNA
Tandem Repeat Sequences - genetics
Transcription
Transcription (Genetics)
title Molecular dynamics simulations of DNA-free and DNA-bound TAL effectors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T18%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20dynamics%20simulations%20of%20DNA-free%20and%20DNA-bound%20TAL%20effectors&rft.jtitle=PloS%20one&rft.au=Wan,%20Hua&rft.date=2013-10-10&rft.volume=8&rft.issue=10&rft.spage=e76045&rft.epage=e76045&rft.pages=e76045-e76045&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0076045&rft_dat=%3Cgale_plos_%3EA478335446%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441280635&rft_id=info:pmid/24130757&rft_galeid=A478335446&rft_doaj_id=oai_doaj_org_article_94794f892bf741ae9a0cadc6fd82d371&rfr_iscdi=true