MicroRNA-3906 regulates fast muscle differentiation through modulating the target gene homer-1b in zebrafish embryos

A microRNA, termed miR-In300 or miR-3906, suppresses the transcription of myf5 through silencing dickkopf-related protein 3 (dkk3r/dkk3a) during early development when myf5 is highly transcribed, but not at late stages when myf5 transcription is reduced. Moreover, after 24 hpf, when muscle cells are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-07, Vol.8 (7), p.e70187-e70187
Hauptverfasser: Lin, Cheng-Yung, Chen, Jie-Shin, Loo, Moo-Rung, Hsiao, Chung-Ching, Chang, Wen-Yen, Tsai, Huai-Jen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e70187
container_issue 7
container_start_page e70187
container_title PloS one
container_volume 8
creator Lin, Cheng-Yung
Chen, Jie-Shin
Loo, Moo-Rung
Hsiao, Chung-Ching
Chang, Wen-Yen
Tsai, Huai-Jen
description A microRNA, termed miR-In300 or miR-3906, suppresses the transcription of myf5 through silencing dickkopf-related protein 3 (dkk3r/dkk3a) during early development when myf5 is highly transcribed, but not at late stages when myf5 transcription is reduced. Moreover, after 24 hpf, when muscle cells are starting to differentiate, Dkk3a could not be detected in muscle tissue at 20 hpf. To explain these reversals, we collected embryos at 32 hpf, performed assays, and identified homer-1b, which regulates calcium release from sarcoplasmic reticulum, as the target gene of miR-3906. We further found that either miR-3906 knockdown or homer-1b overexpression increased expressions of fmhc4 and atp2a1 of calcium-dependent fast muscle fibrils, but not slow muscle fibrils, and caused a severe disruption of sarcomeric actin and Z-disc structure. Additionally, compared to control embryos, the intracellular calcium concentration ([Ca(2+)]i) of these treated embryos was increased as high as 83.9-97.3% in fast muscle. In contrast, either miR-3906 overexpression or homer-1b knockdown caused decreases of [Ca(2+)]i and, correspondingly, defective phenotypes in fast muscle. These defects could be rescued by inducing homer-1b expression at later stage. These results indicate that miR-3906 controls [Ca(2+)]i homeostasis in fast muscle through fine tuning homer-1b expression during differentiation to maintain normal muscle development.
doi_str_mv 10.1371/journal.pone.0070187
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_1440999895</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_923c91c1083140d98ab8d7b2a11ddaf9</doaj_id><sourcerecordid>3095188411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-a70d95ccb82efb21eaf0a6fcad8eb5a5113e072b746f9f508cab9be3930d90053</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QGCJC5cs_kic-IJUVXxUKiAhOFvjZJz1KokX26lUfj0Ou61axMnW-L0388avKF4yumGiYe92fgkzjJu9n3FDaUNZ2zwqTpkSvJScisf37ifFsxh3lNailfJpccKFEpJJelqkL64L_vvX81IoKknAYRkhYSQWYiLTErsRSe-sxYBzcpCcn0naBr8MWzL5fkW7ecglJAnCgIkMOCPZ-glDyQxxM_mNJoB1cUtwMuHGx-fFEwtjxBfH86z4-fHDj4vP5dW3T5cX51dlVyueSmhor-quMy1HazhDsBSk7aBv0dRQMyaQNtw0lbTK1rTtwCiD2VvmrWbPitcH3f3ooz4uLGpWVVQp1aoVcXlA9B52eh_cBOFGe3D6b8GHQUNILi9BKy46xTpGW8Gq3KAF0_aN4cBY34NVWev9sdtiJuy7vK8A4wPRhy-z2-rBX2vRcFXzKgu8PQoE_2vBmPTkYofjCDP6ZZ2bUya5VDJD3_wD_b-76oDKXxxjQHs3DKN6DdEtS68h0scQZdqr-0buSLepEX8AxQDHRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440999895</pqid></control><display><type>article</type><title>MicroRNA-3906 regulates fast muscle differentiation through modulating the target gene homer-1b in zebrafish embryos</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lin, Cheng-Yung ; Chen, Jie-Shin ; Loo, Moo-Rung ; Hsiao, Chung-Ching ; Chang, Wen-Yen ; Tsai, Huai-Jen</creator><contributor>Ruggiero, Florence</contributor><creatorcontrib>Lin, Cheng-Yung ; Chen, Jie-Shin ; Loo, Moo-Rung ; Hsiao, Chung-Ching ; Chang, Wen-Yen ; Tsai, Huai-Jen ; Ruggiero, Florence</creatorcontrib><description>A microRNA, termed miR-In300 or miR-3906, suppresses the transcription of myf5 through silencing dickkopf-related protein 3 (dkk3r/dkk3a) during early development when myf5 is highly transcribed, but not at late stages when myf5 transcription is reduced. Moreover, after 24 hpf, when muscle cells are starting to differentiate, Dkk3a could not be detected in muscle tissue at 20 hpf. To explain these reversals, we collected embryos at 32 hpf, performed assays, and identified homer-1b, which regulates calcium release from sarcoplasmic reticulum, as the target gene of miR-3906. We further found that either miR-3906 knockdown or homer-1b overexpression increased expressions of fmhc4 and atp2a1 of calcium-dependent fast muscle fibrils, but not slow muscle fibrils, and caused a severe disruption of sarcomeric actin and Z-disc structure. Additionally, compared to control embryos, the intracellular calcium concentration ([Ca(2+)]i) of these treated embryos was increased as high as 83.9-97.3% in fast muscle. In contrast, either miR-3906 overexpression or homer-1b knockdown caused decreases of [Ca(2+)]i and, correspondingly, defective phenotypes in fast muscle. These defects could be rescued by inducing homer-1b expression at later stage. These results indicate that miR-3906 controls [Ca(2+)]i homeostasis in fast muscle through fine tuning homer-1b expression during differentiation to maintain normal muscle development.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0070187</identifier><identifier>PMID: 23936160</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>3' Untranslated Regions - genetics ; Actin ; Animals ; Animals, Genetically Modified ; Binding Sites - genetics ; Biology ; Calcium ; Calcium (intracellular) ; Calcium (reticular) ; Calcium - metabolism ; Calcium content ; Calcium homeostasis ; Cell Differentiation - genetics ; Cellular biology ; Danio rerio ; Defects ; Differentiation ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - embryology ; Embryo, Nonmammalian - metabolism ; Embryos ; Fibrils ; Gene expression ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Gene Knockdown Techniques ; Gene silencing ; Homeostasis ; In Situ Hybridization ; Kinases ; Leukemia ; Medicine ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; Microscopy, Electron, Transmission ; miRNA ; Muscle Fibers, Fast-Twitch - cytology ; Muscle Fibers, Fast-Twitch - metabolism ; Muscle, Skeletal - cytology ; Muscle, Skeletal - embryology ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Mutation ; Myogenesis ; Oligonucleotide Array Sequence Analysis ; Proteins ; Reverse Transcriptase Polymerase Chain Reaction ; Ribonucleic acid ; RNA ; Rodents ; Sarcoplasmic reticulum ; Sarcoplasmic Reticulum - metabolism ; Sarcoplasmic Reticulum - ultrastructure ; Zebrafish ; Zebrafish - embryology ; Zebrafish - genetics ; Zebrafish Proteins - genetics ; Zebrafish Proteins - metabolism</subject><ispartof>PloS one, 2013-07, Vol.8 (7), p.e70187-e70187</ispartof><rights>2013 Lin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Lin et al 2013 Lin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-a70d95ccb82efb21eaf0a6fcad8eb5a5113e072b746f9f508cab9be3930d90053</citedby><cites>FETCH-LOGICAL-c592t-a70d95ccb82efb21eaf0a6fcad8eb5a5113e072b746f9f508cab9be3930d90053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729524/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3729524/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23936160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Ruggiero, Florence</contributor><creatorcontrib>Lin, Cheng-Yung</creatorcontrib><creatorcontrib>Chen, Jie-Shin</creatorcontrib><creatorcontrib>Loo, Moo-Rung</creatorcontrib><creatorcontrib>Hsiao, Chung-Ching</creatorcontrib><creatorcontrib>Chang, Wen-Yen</creatorcontrib><creatorcontrib>Tsai, Huai-Jen</creatorcontrib><title>MicroRNA-3906 regulates fast muscle differentiation through modulating the target gene homer-1b in zebrafish embryos</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>A microRNA, termed miR-In300 or miR-3906, suppresses the transcription of myf5 through silencing dickkopf-related protein 3 (dkk3r/dkk3a) during early development when myf5 is highly transcribed, but not at late stages when myf5 transcription is reduced. Moreover, after 24 hpf, when muscle cells are starting to differentiate, Dkk3a could not be detected in muscle tissue at 20 hpf. To explain these reversals, we collected embryos at 32 hpf, performed assays, and identified homer-1b, which regulates calcium release from sarcoplasmic reticulum, as the target gene of miR-3906. We further found that either miR-3906 knockdown or homer-1b overexpression increased expressions of fmhc4 and atp2a1 of calcium-dependent fast muscle fibrils, but not slow muscle fibrils, and caused a severe disruption of sarcomeric actin and Z-disc structure. Additionally, compared to control embryos, the intracellular calcium concentration ([Ca(2+)]i) of these treated embryos was increased as high as 83.9-97.3% in fast muscle. In contrast, either miR-3906 overexpression or homer-1b knockdown caused decreases of [Ca(2+)]i and, correspondingly, defective phenotypes in fast muscle. These defects could be rescued by inducing homer-1b expression at later stage. These results indicate that miR-3906 controls [Ca(2+)]i homeostasis in fast muscle through fine tuning homer-1b expression during differentiation to maintain normal muscle development.</description><subject>3' Untranslated Regions - genetics</subject><subject>Actin</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Binding Sites - genetics</subject><subject>Biology</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium (reticular)</subject><subject>Calcium - metabolism</subject><subject>Calcium content</subject><subject>Calcium homeostasis</subject><subject>Cell Differentiation - genetics</subject><subject>Cellular biology</subject><subject>Danio rerio</subject><subject>Defects</subject><subject>Differentiation</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - embryology</subject><subject>Embryo, Nonmammalian - metabolism</subject><subject>Embryos</subject><subject>Fibrils</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Knockdown Techniques</subject><subject>Gene silencing</subject><subject>Homeostasis</subject><subject>In Situ Hybridization</subject><subject>Kinases</subject><subject>Leukemia</subject><subject>Medicine</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>Microscopy, Electron, Transmission</subject><subject>miRNA</subject><subject>Muscle Fibers, Fast-Twitch - cytology</subject><subject>Muscle Fibers, Fast-Twitch - metabolism</subject><subject>Muscle, Skeletal - cytology</subject><subject>Muscle, Skeletal - embryology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Myogenesis</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>Proteins</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Rodents</subject><subject>Sarcoplasmic reticulum</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Sarcoplasmic Reticulum - ultrastructure</subject><subject>Zebrafish</subject><subject>Zebrafish - embryology</subject><subject>Zebrafish - genetics</subject><subject>Zebrafish Proteins - genetics</subject><subject>Zebrafish Proteins - metabolism</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QGCJC5cs_kic-IJUVXxUKiAhOFvjZJz1KokX26lUfj0Ou61axMnW-L0388avKF4yumGiYe92fgkzjJu9n3FDaUNZ2zwqTpkSvJScisf37ifFsxh3lNailfJpccKFEpJJelqkL64L_vvX81IoKknAYRkhYSQWYiLTErsRSe-sxYBzcpCcn0naBr8MWzL5fkW7ecglJAnCgIkMOCPZ-glDyQxxM_mNJoB1cUtwMuHGx-fFEwtjxBfH86z4-fHDj4vP5dW3T5cX51dlVyueSmhor-quMy1HazhDsBSk7aBv0dRQMyaQNtw0lbTK1rTtwCiD2VvmrWbPitcH3f3ooz4uLGpWVVQp1aoVcXlA9B52eh_cBOFGe3D6b8GHQUNILi9BKy46xTpGW8Gq3KAF0_aN4cBY34NVWev9sdtiJuy7vK8A4wPRhy-z2-rBX2vRcFXzKgu8PQoE_2vBmPTkYofjCDP6ZZ2bUya5VDJD3_wD_b-76oDKXxxjQHs3DKN6DdEtS68h0scQZdqr-0buSLepEX8AxQDHRQ</recordid><startdate>20130731</startdate><enddate>20130731</enddate><creator>Lin, Cheng-Yung</creator><creator>Chen, Jie-Shin</creator><creator>Loo, Moo-Rung</creator><creator>Hsiao, Chung-Ching</creator><creator>Chang, Wen-Yen</creator><creator>Tsai, Huai-Jen</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20130731</creationdate><title>MicroRNA-3906 regulates fast muscle differentiation through modulating the target gene homer-1b in zebrafish embryos</title><author>Lin, Cheng-Yung ; Chen, Jie-Shin ; Loo, Moo-Rung ; Hsiao, Chung-Ching ; Chang, Wen-Yen ; Tsai, Huai-Jen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-a70d95ccb82efb21eaf0a6fcad8eb5a5113e072b746f9f508cab9be3930d90053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3' Untranslated Regions - genetics</topic><topic>Actin</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Binding Sites - genetics</topic><topic>Biology</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium (reticular)</topic><topic>Calcium - metabolism</topic><topic>Calcium content</topic><topic>Calcium homeostasis</topic><topic>Cell Differentiation - genetics</topic><topic>Cellular biology</topic><topic>Danio rerio</topic><topic>Defects</topic><topic>Differentiation</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - embryology</topic><topic>Embryo, Nonmammalian - metabolism</topic><topic>Embryos</topic><topic>Fibrils</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Knockdown Techniques</topic><topic>Gene silencing</topic><topic>Homeostasis</topic><topic>In Situ Hybridization</topic><topic>Kinases</topic><topic>Leukemia</topic><topic>Medicine</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>Microscopy, Electron, Transmission</topic><topic>miRNA</topic><topic>Muscle Fibers, Fast-Twitch - cytology</topic><topic>Muscle Fibers, Fast-Twitch - metabolism</topic><topic>Muscle, Skeletal - cytology</topic><topic>Muscle, Skeletal - embryology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Myogenesis</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>Proteins</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Rodents</topic><topic>Sarcoplasmic reticulum</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Sarcoplasmic Reticulum - ultrastructure</topic><topic>Zebrafish</topic><topic>Zebrafish - embryology</topic><topic>Zebrafish - genetics</topic><topic>Zebrafish Proteins - genetics</topic><topic>Zebrafish Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Cheng-Yung</creatorcontrib><creatorcontrib>Chen, Jie-Shin</creatorcontrib><creatorcontrib>Loo, Moo-Rung</creatorcontrib><creatorcontrib>Hsiao, Chung-Ching</creatorcontrib><creatorcontrib>Chang, Wen-Yen</creatorcontrib><creatorcontrib>Tsai, Huai-Jen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Cheng-Yung</au><au>Chen, Jie-Shin</au><au>Loo, Moo-Rung</au><au>Hsiao, Chung-Ching</au><au>Chang, Wen-Yen</au><au>Tsai, Huai-Jen</au><au>Ruggiero, Florence</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MicroRNA-3906 regulates fast muscle differentiation through modulating the target gene homer-1b in zebrafish embryos</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-07-31</date><risdate>2013</risdate><volume>8</volume><issue>7</issue><spage>e70187</spage><epage>e70187</epage><pages>e70187-e70187</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>A microRNA, termed miR-In300 or miR-3906, suppresses the transcription of myf5 through silencing dickkopf-related protein 3 (dkk3r/dkk3a) during early development when myf5 is highly transcribed, but not at late stages when myf5 transcription is reduced. Moreover, after 24 hpf, when muscle cells are starting to differentiate, Dkk3a could not be detected in muscle tissue at 20 hpf. To explain these reversals, we collected embryos at 32 hpf, performed assays, and identified homer-1b, which regulates calcium release from sarcoplasmic reticulum, as the target gene of miR-3906. We further found that either miR-3906 knockdown or homer-1b overexpression increased expressions of fmhc4 and atp2a1 of calcium-dependent fast muscle fibrils, but not slow muscle fibrils, and caused a severe disruption of sarcomeric actin and Z-disc structure. Additionally, compared to control embryos, the intracellular calcium concentration ([Ca(2+)]i) of these treated embryos was increased as high as 83.9-97.3% in fast muscle. In contrast, either miR-3906 overexpression or homer-1b knockdown caused decreases of [Ca(2+)]i and, correspondingly, defective phenotypes in fast muscle. These defects could be rescued by inducing homer-1b expression at later stage. These results indicate that miR-3906 controls [Ca(2+)]i homeostasis in fast muscle through fine tuning homer-1b expression during differentiation to maintain normal muscle development.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>23936160</pmid><doi>10.1371/journal.pone.0070187</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-07, Vol.8 (7), p.e70187-e70187
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1440999895
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 3' Untranslated Regions - genetics
Actin
Animals
Animals, Genetically Modified
Binding Sites - genetics
Biology
Calcium
Calcium (intracellular)
Calcium (reticular)
Calcium - metabolism
Calcium content
Calcium homeostasis
Cell Differentiation - genetics
Cellular biology
Danio rerio
Defects
Differentiation
Embryo, Nonmammalian - cytology
Embryo, Nonmammalian - embryology
Embryo, Nonmammalian - metabolism
Embryos
Fibrils
Gene expression
Gene Expression Profiling
Gene Expression Regulation, Developmental
Gene Knockdown Techniques
Gene silencing
Homeostasis
In Situ Hybridization
Kinases
Leukemia
Medicine
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
Microscopy, Electron, Transmission
miRNA
Muscle Fibers, Fast-Twitch - cytology
Muscle Fibers, Fast-Twitch - metabolism
Muscle, Skeletal - cytology
Muscle, Skeletal - embryology
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Mutation
Myogenesis
Oligonucleotide Array Sequence Analysis
Proteins
Reverse Transcriptase Polymerase Chain Reaction
Ribonucleic acid
RNA
Rodents
Sarcoplasmic reticulum
Sarcoplasmic Reticulum - metabolism
Sarcoplasmic Reticulum - ultrastructure
Zebrafish
Zebrafish - embryology
Zebrafish - genetics
Zebrafish Proteins - genetics
Zebrafish Proteins - metabolism
title MicroRNA-3906 regulates fast muscle differentiation through modulating the target gene homer-1b in zebrafish embryos
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MicroRNA-3906%20regulates%20fast%20muscle%20differentiation%20through%20modulating%20the%20target%20gene%20homer-1b%20in%20zebrafish%20embryos&rft.jtitle=PloS%20one&rft.au=Lin,%20Cheng-Yung&rft.date=2013-07-31&rft.volume=8&rft.issue=7&rft.spage=e70187&rft.epage=e70187&rft.pages=e70187-e70187&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0070187&rft_dat=%3Cproquest_plos_%3E3095188411%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440999895&rft_id=info:pmid/23936160&rft_doaj_id=oai_doaj_org_article_923c91c1083140d98ab8d7b2a11ddaf9&rfr_iscdi=true