Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers
To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted. We evaluated a particular metabolic profile with regard to it...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-10, Vol.8 (10), p.e76813-e76813 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e76813 |
---|---|
container_issue | 10 |
container_start_page | e76813 |
container_title | PloS one |
container_volume | 8 |
creator | Siegert, Sabine Yu, Zhonghao Wang-Sattler, Rui Illig, Thomas Adamski, Jerzy Hampe, Jochen Nikolaus, Susanna Schreiber, Stefan Krawczak, Michael Nothnagel, Michael Nöthlings, Ute |
description | To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted.
We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes.
The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-matched controls for whom the serum concentration was measured of 138 different metabolites, including acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins. Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement (IDI) and by way of cross-validation (CV).
Use of metabolic markers for predicting FLD showed the best performance among all considered types of markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for predicting FLD.
We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD over that of models based solely upon phenotypes and conventional biomarkers. |
doi_str_mv | 10.1371/journal.pone.0076813 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1440830309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478353538</galeid><doaj_id>oai_doaj_org_article_a26b02b0f3854343bfe1b0befa5ee252</doaj_id><sourcerecordid>A478353538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d9d1910b1340886b9a979d3f5658018d346900c7365267227183f261cdadd2283</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QDC6LgjPlo08YLYVm_BhYW_LoNaXPayZo2tWkH58q_brrTWaayF5KLHE6e8yZ5kxNFTwleEZaSN9du6BplV61rYIVxyjPC7kWnRDC65BSz-0fxSfTI-2uME5Zx_jA6oTFhOBX0NPrz3qiqcd40FSpV3--QNVvokDYelIe3SKHC1a3qVB_yCLbKDiF0DXIlqqFXubOmQLXqfkLnX6N2A43rdy2EuDqESDUagQ-wNX4DGuXGTRWPowelsh6eTPMi-v7xw7eLz8vLq0_ri_PLZcEF7ZdaaCIIzgmLcZbxXCiRCs3KhCcZJplmMRcYFynjCeUppSnJWEk5KbTSmtKMLaLne93WOi8n77wkcdBjmGERiPWe0E5dy7Yz4YQ76ZSRNwnXVVJ1vSksSEV5jmmOS5YlMYtZXgLJcQ6lSgBoQoPWu2m3Ia9BF9D0nbIz0flKYzayclvJUsFE0FxELyeBzv0agnWyNr4Aa1UDbrg5NxNCEDKiZ_-gd99uoioVLmCa0oV9i1FUnsdpxpIwRpdWd1BhaKhNET5aaUJ-VvBqVhCYHn73lRq8l-uvX_6fvfoxZ18csRtQtt94Z4fx5_k5GO_BonPed1DemkywHPvk4IYc-0ROfRLKnh0_0G3RoTHYX0pCDiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440830309</pqid></control><display><type>article</type><title>Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Siegert, Sabine ; Yu, Zhonghao ; Wang-Sattler, Rui ; Illig, Thomas ; Adamski, Jerzy ; Hampe, Jochen ; Nikolaus, Susanna ; Schreiber, Stefan ; Krawczak, Michael ; Nothnagel, Michael ; Nöthlings, Ute</creator><contributor>Villa, Erica</contributor><creatorcontrib>Siegert, Sabine ; Yu, Zhonghao ; Wang-Sattler, Rui ; Illig, Thomas ; Adamski, Jerzy ; Hampe, Jochen ; Nikolaus, Susanna ; Schreiber, Stefan ; Krawczak, Michael ; Nothnagel, Michael ; Nöthlings, Ute ; Villa, Erica</creatorcontrib><description>To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted.
We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes.
The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-matched controls for whom the serum concentration was measured of 138 different metabolites, including acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins. Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement (IDI) and by way of cross-validation (CV).
Use of metabolic markers for predicting FLD showed the best performance among all considered types of markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for predicting FLD.
We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD over that of models based solely upon phenotypes and conventional biomarkers.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0076813</identifier><identifier>PMID: 24130792</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aged ; Alcohol use ; Amines ; Amino acids ; Biogenic amines ; Biological markers ; Biomarkers ; Biomarkers - metabolism ; Biopsy ; Blood lipids ; Branched chain amino acids ; Chain branching ; Diagnosis ; Diagnostic software ; Diagnostic systems ; Discriminant analysis ; Endpoint Determination ; Epidemiology ; Family medical history ; Fatty liver ; Fatty Liver - diagnosis ; Fatty Liver - genetics ; Fatty Liver - metabolism ; Female ; Genetic aspects ; Genomics ; Genotype ; Genotypes ; Health aspects ; Health informatics ; Health risks ; Hepatology ; Hexose ; Hospitals ; Humans ; Internal medicine ; Lipids ; Liver ; Liver diseases ; Male ; Mathematical models ; Medical diagnosis ; Medical imaging ; Medical research ; Medicine ; Metabolism ; Metabolites ; Middle Aged ; Phenotype ; Phenotypes ; Phospholipids ; Plant lipids ; Population studies ; Regression analysis ; Sensitivity and Specificity ; Type 2 diabetes ; Ultrasonic imaging ; Ultrasound</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e76813-e76813</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Siegert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Siegert et al 2013 Siegert et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d9d1910b1340886b9a979d3f5658018d346900c7365267227183f261cdadd2283</citedby><cites>FETCH-LOGICAL-c692t-d9d1910b1340886b9a979d3f5658018d346900c7365267227183f261cdadd2283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793954/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793954/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24130792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Villa, Erica</contributor><creatorcontrib>Siegert, Sabine</creatorcontrib><creatorcontrib>Yu, Zhonghao</creatorcontrib><creatorcontrib>Wang-Sattler, Rui</creatorcontrib><creatorcontrib>Illig, Thomas</creatorcontrib><creatorcontrib>Adamski, Jerzy</creatorcontrib><creatorcontrib>Hampe, Jochen</creatorcontrib><creatorcontrib>Nikolaus, Susanna</creatorcontrib><creatorcontrib>Schreiber, Stefan</creatorcontrib><creatorcontrib>Krawczak, Michael</creatorcontrib><creatorcontrib>Nothnagel, Michael</creatorcontrib><creatorcontrib>Nöthlings, Ute</creatorcontrib><title>Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted.
We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes.
The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-matched controls for whom the serum concentration was measured of 138 different metabolites, including acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins. Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement (IDI) and by way of cross-validation (CV).
Use of metabolic markers for predicting FLD showed the best performance among all considered types of markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for predicting FLD.
We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD over that of models based solely upon phenotypes and conventional biomarkers.</description><subject>Aged</subject><subject>Alcohol use</subject><subject>Amines</subject><subject>Amino acids</subject><subject>Biogenic amines</subject><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>Biopsy</subject><subject>Blood lipids</subject><subject>Branched chain amino acids</subject><subject>Chain branching</subject><subject>Diagnosis</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Discriminant analysis</subject><subject>Endpoint Determination</subject><subject>Epidemiology</subject><subject>Family medical history</subject><subject>Fatty liver</subject><subject>Fatty Liver - diagnosis</subject><subject>Fatty Liver - genetics</subject><subject>Fatty Liver - metabolism</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Health aspects</subject><subject>Health informatics</subject><subject>Health risks</subject><subject>Hepatology</subject><subject>Hexose</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Internal medicine</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Middle Aged</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phospholipids</subject><subject>Plant lipids</subject><subject>Population studies</subject><subject>Regression analysis</subject><subject>Sensitivity and Specificity</subject><subject>Type 2 diabetes</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QDC6LgjPlo08YLYVm_BhYW_LoNaXPayZo2tWkH58q_brrTWaayF5KLHE6e8yZ5kxNFTwleEZaSN9du6BplV61rYIVxyjPC7kWnRDC65BSz-0fxSfTI-2uME5Zx_jA6oTFhOBX0NPrz3qiqcd40FSpV3--QNVvokDYelIe3SKHC1a3qVB_yCLbKDiF0DXIlqqFXubOmQLXqfkLnX6N2A43rdy2EuDqESDUagQ-wNX4DGuXGTRWPowelsh6eTPMi-v7xw7eLz8vLq0_ri_PLZcEF7ZdaaCIIzgmLcZbxXCiRCs3KhCcZJplmMRcYFynjCeUppSnJWEk5KbTSmtKMLaLne93WOi8n77wkcdBjmGERiPWe0E5dy7Yz4YQ76ZSRNwnXVVJ1vSksSEV5jmmOS5YlMYtZXgLJcQ6lSgBoQoPWu2m3Ia9BF9D0nbIz0flKYzayclvJUsFE0FxELyeBzv0agnWyNr4Aa1UDbrg5NxNCEDKiZ_-gd99uoioVLmCa0oV9i1FUnsdpxpIwRpdWd1BhaKhNET5aaUJ-VvBqVhCYHn73lRq8l-uvX_6fvfoxZ18csRtQtt94Z4fx5_k5GO_BonPed1DemkywHPvk4IYc-0ROfRLKnh0_0G3RoTHYX0pCDiQ</recordid><startdate>20131009</startdate><enddate>20131009</enddate><creator>Siegert, Sabine</creator><creator>Yu, Zhonghao</creator><creator>Wang-Sattler, Rui</creator><creator>Illig, Thomas</creator><creator>Adamski, Jerzy</creator><creator>Hampe, Jochen</creator><creator>Nikolaus, Susanna</creator><creator>Schreiber, Stefan</creator><creator>Krawczak, Michael</creator><creator>Nothnagel, Michael</creator><creator>Nöthlings, Ute</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131009</creationdate><title>Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers</title><author>Siegert, Sabine ; Yu, Zhonghao ; Wang-Sattler, Rui ; Illig, Thomas ; Adamski, Jerzy ; Hampe, Jochen ; Nikolaus, Susanna ; Schreiber, Stefan ; Krawczak, Michael ; Nothnagel, Michael ; Nöthlings, Ute</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d9d1910b1340886b9a979d3f5658018d346900c7365267227183f261cdadd2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aged</topic><topic>Alcohol use</topic><topic>Amines</topic><topic>Amino acids</topic><topic>Biogenic amines</topic><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>Biopsy</topic><topic>Blood lipids</topic><topic>Branched chain amino acids</topic><topic>Chain branching</topic><topic>Diagnosis</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Discriminant analysis</topic><topic>Endpoint Determination</topic><topic>Epidemiology</topic><topic>Family medical history</topic><topic>Fatty liver</topic><topic>Fatty Liver - diagnosis</topic><topic>Fatty Liver - genetics</topic><topic>Fatty Liver - metabolism</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Health aspects</topic><topic>Health informatics</topic><topic>Health risks</topic><topic>Hepatology</topic><topic>Hexose</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Internal medicine</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Middle Aged</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phospholipids</topic><topic>Plant lipids</topic><topic>Population studies</topic><topic>Regression analysis</topic><topic>Sensitivity and Specificity</topic><topic>Type 2 diabetes</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siegert, Sabine</creatorcontrib><creatorcontrib>Yu, Zhonghao</creatorcontrib><creatorcontrib>Wang-Sattler, Rui</creatorcontrib><creatorcontrib>Illig, Thomas</creatorcontrib><creatorcontrib>Adamski, Jerzy</creatorcontrib><creatorcontrib>Hampe, Jochen</creatorcontrib><creatorcontrib>Nikolaus, Susanna</creatorcontrib><creatorcontrib>Schreiber, Stefan</creatorcontrib><creatorcontrib>Krawczak, Michael</creatorcontrib><creatorcontrib>Nothnagel, Michael</creatorcontrib><creatorcontrib>Nöthlings, Ute</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siegert, Sabine</au><au>Yu, Zhonghao</au><au>Wang-Sattler, Rui</au><au>Illig, Thomas</au><au>Adamski, Jerzy</au><au>Hampe, Jochen</au><au>Nikolaus, Susanna</au><au>Schreiber, Stefan</au><au>Krawczak, Michael</au><au>Nothnagel, Michael</au><au>Nöthlings, Ute</au><au>Villa, Erica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-09</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e76813</spage><epage>e76813</epage><pages>e76813-e76813</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted.
We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes.
The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-matched controls for whom the serum concentration was measured of 138 different metabolites, including acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins. Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement (IDI) and by way of cross-validation (CV).
Use of metabolic markers for predicting FLD showed the best performance among all considered types of markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for predicting FLD.
We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD over that of models based solely upon phenotypes and conventional biomarkers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24130792</pmid><doi>10.1371/journal.pone.0076813</doi><tpages>e76813</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-10, Vol.8 (10), p.e76813-e76813 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_1440830309 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aged Alcohol use Amines Amino acids Biogenic amines Biological markers Biomarkers Biomarkers - metabolism Biopsy Blood lipids Branched chain amino acids Chain branching Diagnosis Diagnostic software Diagnostic systems Discriminant analysis Endpoint Determination Epidemiology Family medical history Fatty liver Fatty Liver - diagnosis Fatty Liver - genetics Fatty Liver - metabolism Female Genetic aspects Genomics Genotype Genotypes Health aspects Health informatics Health risks Hepatology Hexose Hospitals Humans Internal medicine Lipids Liver Liver diseases Male Mathematical models Medical diagnosis Medical imaging Medical research Medicine Metabolism Metabolites Middle Aged Phenotype Phenotypes Phospholipids Plant lipids Population studies Regression analysis Sensitivity and Specificity Type 2 diabetes Ultrasonic imaging Ultrasound |
title | Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T04%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosing%20fatty%20liver%20disease:%20a%20comparative%20evaluation%20of%20metabolic%20markers,%20phenotypes,%20genotypes%20and%20established%20biomarkers&rft.jtitle=PloS%20one&rft.au=Siegert,%20Sabine&rft.date=2013-10-09&rft.volume=8&rft.issue=10&rft.spage=e76813&rft.epage=e76813&rft.pages=e76813-e76813&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0076813&rft_dat=%3Cgale_plos_%3EA478353538%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440830309&rft_id=info:pmid/24130792&rft_galeid=A478353538&rft_doaj_id=oai_doaj_org_article_a26b02b0f3854343bfe1b0befa5ee252&rfr_iscdi=true |