Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers

To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted. We evaluated a particular metabolic profile with regard to it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-10, Vol.8 (10), p.e76813-e76813
Hauptverfasser: Siegert, Sabine, Yu, Zhonghao, Wang-Sattler, Rui, Illig, Thomas, Adamski, Jerzy, Hampe, Jochen, Nikolaus, Susanna, Schreiber, Stefan, Krawczak, Michael, Nothnagel, Michael, Nöthlings, Ute
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e76813
container_issue 10
container_start_page e76813
container_title PloS one
container_volume 8
creator Siegert, Sabine
Yu, Zhonghao
Wang-Sattler, Rui
Illig, Thomas
Adamski, Jerzy
Hampe, Jochen
Nikolaus, Susanna
Schreiber, Stefan
Krawczak, Michael
Nothnagel, Michael
Nöthlings, Ute
description To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted. We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes. The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-matched controls for whom the serum concentration was measured of 138 different metabolites, including acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins. Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement (IDI) and by way of cross-validation (CV). Use of metabolic markers for predicting FLD showed the best performance among all considered types of markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for predicting FLD. We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD over that of models based solely upon phenotypes and conventional biomarkers.
doi_str_mv 10.1371/journal.pone.0076813
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_1440830309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478353538</galeid><doaj_id>oai_doaj_org_article_a26b02b0f3854343bfe1b0befa5ee252</doaj_id><sourcerecordid>A478353538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d9d1910b1340886b9a979d3f5658018d346900c7365267227183f261cdadd2283</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7jr6D0QDC6LgjPlo08YLYVm_BhYW_LoNaXPayZo2tWkH58q_brrTWaayF5KLHE6e8yZ5kxNFTwleEZaSN9du6BplV61rYIVxyjPC7kWnRDC65BSz-0fxSfTI-2uME5Zx_jA6oTFhOBX0NPrz3qiqcd40FSpV3--QNVvokDYelIe3SKHC1a3qVB_yCLbKDiF0DXIlqqFXubOmQLXqfkLnX6N2A43rdy2EuDqESDUagQ-wNX4DGuXGTRWPowelsh6eTPMi-v7xw7eLz8vLq0_ri_PLZcEF7ZdaaCIIzgmLcZbxXCiRCs3KhCcZJplmMRcYFynjCeUppSnJWEk5KbTSmtKMLaLne93WOi8n77wkcdBjmGERiPWe0E5dy7Yz4YQ76ZSRNwnXVVJ1vSksSEV5jmmOS5YlMYtZXgLJcQ6lSgBoQoPWu2m3Ia9BF9D0nbIz0flKYzayclvJUsFE0FxELyeBzv0agnWyNr4Aa1UDbrg5NxNCEDKiZ_-gd99uoioVLmCa0oV9i1FUnsdpxpIwRpdWd1BhaKhNET5aaUJ-VvBqVhCYHn73lRq8l-uvX_6fvfoxZ18csRtQtt94Z4fx5_k5GO_BonPed1DemkywHPvk4IYc-0ROfRLKnh0_0G3RoTHYX0pCDiQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440830309</pqid></control><display><type>article</type><title>Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Siegert, Sabine ; Yu, Zhonghao ; Wang-Sattler, Rui ; Illig, Thomas ; Adamski, Jerzy ; Hampe, Jochen ; Nikolaus, Susanna ; Schreiber, Stefan ; Krawczak, Michael ; Nothnagel, Michael ; Nöthlings, Ute</creator><contributor>Villa, Erica</contributor><creatorcontrib>Siegert, Sabine ; Yu, Zhonghao ; Wang-Sattler, Rui ; Illig, Thomas ; Adamski, Jerzy ; Hampe, Jochen ; Nikolaus, Susanna ; Schreiber, Stefan ; Krawczak, Michael ; Nothnagel, Michael ; Nöthlings, Ute ; Villa, Erica</creatorcontrib><description>To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted. We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes. The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-matched controls for whom the serum concentration was measured of 138 different metabolites, including acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins. Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement (IDI) and by way of cross-validation (CV). Use of metabolic markers for predicting FLD showed the best performance among all considered types of markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for predicting FLD. We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD over that of models based solely upon phenotypes and conventional biomarkers.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0076813</identifier><identifier>PMID: 24130792</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aged ; Alcohol use ; Amines ; Amino acids ; Biogenic amines ; Biological markers ; Biomarkers ; Biomarkers - metabolism ; Biopsy ; Blood lipids ; Branched chain amino acids ; Chain branching ; Diagnosis ; Diagnostic software ; Diagnostic systems ; Discriminant analysis ; Endpoint Determination ; Epidemiology ; Family medical history ; Fatty liver ; Fatty Liver - diagnosis ; Fatty Liver - genetics ; Fatty Liver - metabolism ; Female ; Genetic aspects ; Genomics ; Genotype ; Genotypes ; Health aspects ; Health informatics ; Health risks ; Hepatology ; Hexose ; Hospitals ; Humans ; Internal medicine ; Lipids ; Liver ; Liver diseases ; Male ; Mathematical models ; Medical diagnosis ; Medical imaging ; Medical research ; Medicine ; Metabolism ; Metabolites ; Middle Aged ; Phenotype ; Phenotypes ; Phospholipids ; Plant lipids ; Population studies ; Regression analysis ; Sensitivity and Specificity ; Type 2 diabetes ; Ultrasonic imaging ; Ultrasound</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e76813-e76813</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Siegert et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Siegert et al 2013 Siegert et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d9d1910b1340886b9a979d3f5658018d346900c7365267227183f261cdadd2283</citedby><cites>FETCH-LOGICAL-c692t-d9d1910b1340886b9a979d3f5658018d346900c7365267227183f261cdadd2283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793954/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3793954/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2106,2932,23875,27933,27934,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24130792$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Villa, Erica</contributor><creatorcontrib>Siegert, Sabine</creatorcontrib><creatorcontrib>Yu, Zhonghao</creatorcontrib><creatorcontrib>Wang-Sattler, Rui</creatorcontrib><creatorcontrib>Illig, Thomas</creatorcontrib><creatorcontrib>Adamski, Jerzy</creatorcontrib><creatorcontrib>Hampe, Jochen</creatorcontrib><creatorcontrib>Nikolaus, Susanna</creatorcontrib><creatorcontrib>Schreiber, Stefan</creatorcontrib><creatorcontrib>Krawczak, Michael</creatorcontrib><creatorcontrib>Nothnagel, Michael</creatorcontrib><creatorcontrib>Nöthlings, Ute</creatorcontrib><title>Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted. We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes. The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-matched controls for whom the serum concentration was measured of 138 different metabolites, including acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins. Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement (IDI) and by way of cross-validation (CV). Use of metabolic markers for predicting FLD showed the best performance among all considered types of markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for predicting FLD. We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD over that of models based solely upon phenotypes and conventional biomarkers.</description><subject>Aged</subject><subject>Alcohol use</subject><subject>Amines</subject><subject>Amino acids</subject><subject>Biogenic amines</subject><subject>Biological markers</subject><subject>Biomarkers</subject><subject>Biomarkers - metabolism</subject><subject>Biopsy</subject><subject>Blood lipids</subject><subject>Branched chain amino acids</subject><subject>Chain branching</subject><subject>Diagnosis</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Discriminant analysis</subject><subject>Endpoint Determination</subject><subject>Epidemiology</subject><subject>Family medical history</subject><subject>Fatty liver</subject><subject>Fatty Liver - diagnosis</subject><subject>Fatty Liver - genetics</subject><subject>Fatty Liver - metabolism</subject><subject>Female</subject><subject>Genetic aspects</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Genotypes</subject><subject>Health aspects</subject><subject>Health informatics</subject><subject>Health risks</subject><subject>Hepatology</subject><subject>Hexose</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Internal medicine</subject><subject>Lipids</subject><subject>Liver</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medical diagnosis</subject><subject>Medical imaging</subject><subject>Medical research</subject><subject>Medicine</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Middle Aged</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Phospholipids</subject><subject>Plant lipids</subject><subject>Population studies</subject><subject>Regression analysis</subject><subject>Sensitivity and Specificity</subject><subject>Type 2 diabetes</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7jr6D0QDC6LgjPlo08YLYVm_BhYW_LoNaXPayZo2tWkH58q_brrTWaayF5KLHE6e8yZ5kxNFTwleEZaSN9du6BplV61rYIVxyjPC7kWnRDC65BSz-0fxSfTI-2uME5Zx_jA6oTFhOBX0NPrz3qiqcd40FSpV3--QNVvokDYelIe3SKHC1a3qVB_yCLbKDiF0DXIlqqFXubOmQLXqfkLnX6N2A43rdy2EuDqESDUagQ-wNX4DGuXGTRWPowelsh6eTPMi-v7xw7eLz8vLq0_ri_PLZcEF7ZdaaCIIzgmLcZbxXCiRCs3KhCcZJplmMRcYFynjCeUppSnJWEk5KbTSmtKMLaLne93WOi8n77wkcdBjmGERiPWe0E5dy7Yz4YQ76ZSRNwnXVVJ1vSksSEV5jmmOS5YlMYtZXgLJcQ6lSgBoQoPWu2m3Ia9BF9D0nbIz0flKYzayclvJUsFE0FxELyeBzv0agnWyNr4Aa1UDbrg5NxNCEDKiZ_-gd99uoioVLmCa0oV9i1FUnsdpxpIwRpdWd1BhaKhNET5aaUJ-VvBqVhCYHn73lRq8l-uvX_6fvfoxZ18csRtQtt94Z4fx5_k5GO_BonPed1DemkywHPvk4IYc-0ROfRLKnh0_0G3RoTHYX0pCDiQ</recordid><startdate>20131009</startdate><enddate>20131009</enddate><creator>Siegert, Sabine</creator><creator>Yu, Zhonghao</creator><creator>Wang-Sattler, Rui</creator><creator>Illig, Thomas</creator><creator>Adamski, Jerzy</creator><creator>Hampe, Jochen</creator><creator>Nikolaus, Susanna</creator><creator>Schreiber, Stefan</creator><creator>Krawczak, Michael</creator><creator>Nothnagel, Michael</creator><creator>Nöthlings, Ute</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131009</creationdate><title>Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers</title><author>Siegert, Sabine ; Yu, Zhonghao ; Wang-Sattler, Rui ; Illig, Thomas ; Adamski, Jerzy ; Hampe, Jochen ; Nikolaus, Susanna ; Schreiber, Stefan ; Krawczak, Michael ; Nothnagel, Michael ; Nöthlings, Ute</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d9d1910b1340886b9a979d3f5658018d346900c7365267227183f261cdadd2283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aged</topic><topic>Alcohol use</topic><topic>Amines</topic><topic>Amino acids</topic><topic>Biogenic amines</topic><topic>Biological markers</topic><topic>Biomarkers</topic><topic>Biomarkers - metabolism</topic><topic>Biopsy</topic><topic>Blood lipids</topic><topic>Branched chain amino acids</topic><topic>Chain branching</topic><topic>Diagnosis</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Discriminant analysis</topic><topic>Endpoint Determination</topic><topic>Epidemiology</topic><topic>Family medical history</topic><topic>Fatty liver</topic><topic>Fatty Liver - diagnosis</topic><topic>Fatty Liver - genetics</topic><topic>Fatty Liver - metabolism</topic><topic>Female</topic><topic>Genetic aspects</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Genotypes</topic><topic>Health aspects</topic><topic>Health informatics</topic><topic>Health risks</topic><topic>Hepatology</topic><topic>Hexose</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Internal medicine</topic><topic>Lipids</topic><topic>Liver</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medical diagnosis</topic><topic>Medical imaging</topic><topic>Medical research</topic><topic>Medicine</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Middle Aged</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Phospholipids</topic><topic>Plant lipids</topic><topic>Population studies</topic><topic>Regression analysis</topic><topic>Sensitivity and Specificity</topic><topic>Type 2 diabetes</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Siegert, Sabine</creatorcontrib><creatorcontrib>Yu, Zhonghao</creatorcontrib><creatorcontrib>Wang-Sattler, Rui</creatorcontrib><creatorcontrib>Illig, Thomas</creatorcontrib><creatorcontrib>Adamski, Jerzy</creatorcontrib><creatorcontrib>Hampe, Jochen</creatorcontrib><creatorcontrib>Nikolaus, Susanna</creatorcontrib><creatorcontrib>Schreiber, Stefan</creatorcontrib><creatorcontrib>Krawczak, Michael</creatorcontrib><creatorcontrib>Nothnagel, Michael</creatorcontrib><creatorcontrib>Nöthlings, Ute</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Siegert, Sabine</au><au>Yu, Zhonghao</au><au>Wang-Sattler, Rui</au><au>Illig, Thomas</au><au>Adamski, Jerzy</au><au>Hampe, Jochen</au><au>Nikolaus, Susanna</au><au>Schreiber, Stefan</au><au>Krawczak, Michael</au><au>Nothnagel, Michael</au><au>Nöthlings, Ute</au><au>Villa, Erica</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-09</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e76813</spage><epage>e76813</epage><pages>e76813-e76813</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To date, liver biopsy is the only means of reliable diagnosis for fatty liver disease (FLD). Owing to the inevitable biopsy-associated health risks, however, the development of valid noninvasive diagnostic tools for FLD is well warranted. We evaluated a particular metabolic profile with regard to its ability to diagnose FLD and compared its performance to that of established phenotypes, conventional biomarkers and disease-associated genotypes. The study population comprised 115 patients with ultrasound-diagnosed FLD and 115 sex- and age-matched controls for whom the serum concentration was measured of 138 different metabolites, including acylcarnitines, amino acids, biogenic amines, hexose, phosphatidylcholines (PCs), lyso-PCs and sphingomyelins. Established phenotypes, biomarkers, disease-associated genotypes and metabolite data were included in diagnostic models for FLD using logistic regression and partial least-squares discriminant analysis. The discriminative power of the ensuing models was compared with respect to area under curve (AUC), integrated discrimination improvement (IDI) and by way of cross-validation (CV). Use of metabolic markers for predicting FLD showed the best performance among all considered types of markers, yielding an AUC of 0.8993. Additional information on phenotypes, conventional biomarkers or genotypes did not significantly improve this performance. Phospholipids and branched-chain amino acids were most informative for predicting FLD. We show that the inclusion of metabolite data may substantially increase the power to diagnose FLD over that of models based solely upon phenotypes and conventional biomarkers.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24130792</pmid><doi>10.1371/journal.pone.0076813</doi><tpages>e76813</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2013-10, Vol.8 (10), p.e76813-e76813
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_1440830309
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Aged
Alcohol use
Amines
Amino acids
Biogenic amines
Biological markers
Biomarkers
Biomarkers - metabolism
Biopsy
Blood lipids
Branched chain amino acids
Chain branching
Diagnosis
Diagnostic software
Diagnostic systems
Discriminant analysis
Endpoint Determination
Epidemiology
Family medical history
Fatty liver
Fatty Liver - diagnosis
Fatty Liver - genetics
Fatty Liver - metabolism
Female
Genetic aspects
Genomics
Genotype
Genotypes
Health aspects
Health informatics
Health risks
Hepatology
Hexose
Hospitals
Humans
Internal medicine
Lipids
Liver
Liver diseases
Male
Mathematical models
Medical diagnosis
Medical imaging
Medical research
Medicine
Metabolism
Metabolites
Middle Aged
Phenotype
Phenotypes
Phospholipids
Plant lipids
Population studies
Regression analysis
Sensitivity and Specificity
Type 2 diabetes
Ultrasonic imaging
Ultrasound
title Diagnosing fatty liver disease: a comparative evaluation of metabolic markers, phenotypes, genotypes and established biomarkers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-30T04%3A29%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diagnosing%20fatty%20liver%20disease:%20a%20comparative%20evaluation%20of%20metabolic%20markers,%20phenotypes,%20genotypes%20and%20established%20biomarkers&rft.jtitle=PloS%20one&rft.au=Siegert,%20Sabine&rft.date=2013-10-09&rft.volume=8&rft.issue=10&rft.spage=e76813&rft.epage=e76813&rft.pages=e76813-e76813&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0076813&rft_dat=%3Cgale_plos_%3EA478353538%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440830309&rft_id=info:pmid/24130792&rft_galeid=A478353538&rft_doaj_id=oai_doaj_org_article_a26b02b0f3854343bfe1b0befa5ee252&rfr_iscdi=true